Error numerical analysis for result of rainfall prediction between Tsukamoto FIS and hybrid Tsukamoto FIS with GA

I. Wahyuni, Fitri Utaminingrum
{"title":"Error numerical analysis for result of rainfall prediction between Tsukamoto FIS and hybrid Tsukamoto FIS with GA","authors":"I. Wahyuni, Fitri Utaminingrum","doi":"10.1109/ICACSIS.2016.7872721","DOIUrl":null,"url":null,"abstract":"Rainfall is one important aspect of everyday life, but now rainfall increasingly unpredictable. Therefore it needs to make an accurate method to predict rainfall with small error. Tsukamoto FIS and genetic algorithm is one of algorithms that can be used for prediction problems. Research using Tsukamoto FIS and hybrid Tsukamoto FIS with GA for forecasting rainfall had been done already. The prediction results generated from both methods have a diverse error value. Need an error analysis to determine which method is most optimal to predict rainfall with minimum error. Therefore, this study focuses on error numerical analysis on the result of rainfall prediction using Tsukamoto FIS and hybrid Tsukamoto FIS with GA. From the analysis, Tsukamoto FIS produce relatively small error, but this method is weak when predicting rainfall = 0 or no rain. While hybrid Tsukamoto FIS with GA produce small error for predicting rainfall = 0 or no rain. It concluded that a hybrid method Tsukamoto FIS with GA generate an error value more smaller than Tsukamoto FIS.","PeriodicalId":267924,"journal":{"name":"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2016.7872721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Rainfall is one important aspect of everyday life, but now rainfall increasingly unpredictable. Therefore it needs to make an accurate method to predict rainfall with small error. Tsukamoto FIS and genetic algorithm is one of algorithms that can be used for prediction problems. Research using Tsukamoto FIS and hybrid Tsukamoto FIS with GA for forecasting rainfall had been done already. The prediction results generated from both methods have a diverse error value. Need an error analysis to determine which method is most optimal to predict rainfall with minimum error. Therefore, this study focuses on error numerical analysis on the result of rainfall prediction using Tsukamoto FIS and hybrid Tsukamoto FIS with GA. From the analysis, Tsukamoto FIS produce relatively small error, but this method is weak when predicting rainfall = 0 or no rain. While hybrid Tsukamoto FIS with GA produce small error for predicting rainfall = 0 or no rain. It concluded that a hybrid method Tsukamoto FIS with GA generate an error value more smaller than Tsukamoto FIS.
冢本FIS与遗传算法混合冢本FIS预报结果的误差数值分析
降雨是日常生活的一个重要方面,但现在降雨越来越难以预测。因此,需要制定一种准确、误差小的降雨预报方法。冢本FIS和遗传算法是可用于预测问题的算法之一。利用冢本FIS和混合冢本FIS与遗传算法进行降雨预报的研究已经完成。两种方法的预测结果误差值不同。需要进行误差分析,以确定哪种方法最适合以最小误差预测降雨。因此,本研究重点对Tsukamoto FIS和混合Tsukamoto FIS与遗传算法的降雨预报结果进行误差数值分析。从分析来看,Tsukamoto FIS产生的误差较小,但该方法在预测降雨量= 0或无雨时较弱。结合遗传算法的混合冢本FIS对降雨= 0或无雨的预测误差较小。结果表明,遗传算法与冢本FIS混合产生的误差值要小于冢本FIS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信