Design and Implementation of Parallel Term Contribution Algorithm Based on Mapreduce Model

Peng Chao, Wu Bin, Deng Chao
{"title":"Design and Implementation of Parallel Term Contribution Algorithm Based on Mapreduce Model","authors":"Peng Chao, Wu Bin, Deng Chao","doi":"10.1109/OCS.2012.39","DOIUrl":null,"url":null,"abstract":"MapReduce is a software framework introduced by Google in 2004 to support distributed computing on large datasets on clusters of computers[1]. The term contribution (TC) algorithm is a relatively new algorithm in text mining to select features for clustering. In this paper, we design and implement a parallel term contribution (PTC) algorithm based on MapReduce model. By experiment, we come to the conclusion that the performance of TC is greatly enhanced using MapReduce framework.","PeriodicalId":244833,"journal":{"name":"2012 7th Open Cirrus Summit","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th Open Cirrus Summit","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCS.2012.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

MapReduce is a software framework introduced by Google in 2004 to support distributed computing on large datasets on clusters of computers[1]. The term contribution (TC) algorithm is a relatively new algorithm in text mining to select features for clustering. In this paper, we design and implement a parallel term contribution (PTC) algorithm based on MapReduce model. By experiment, we come to the conclusion that the performance of TC is greatly enhanced using MapReduce framework.
基于Mapreduce模型的并行项贡献算法的设计与实现
MapReduce是谷歌在2004年推出的一个软件框架,用于支持在[1]计算机集群上的大型数据集上进行分布式计算。术语贡献算法(term contribution, TC)是文本挖掘中一种较新的聚类特征选择算法。本文设计并实现了一种基于MapReduce模型的并行项贡献(PTC)算法。通过实验,我们得出结论,使用MapReduce框架大大提高了TC的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信