Exploration of Word Embedding Model to Improve Context-Aware Recommender Systems

C. V. Sundermann, João Antunes, M. A. Domingues, S. O. Rezende
{"title":"Exploration of Word Embedding Model to Improve Context-Aware Recommender Systems","authors":"C. V. Sundermann, João Antunes, M. A. Domingues, S. O. Rezende","doi":"10.1109/WI.2018.00-64","DOIUrl":null,"url":null,"abstract":"Recommender systems aim to assist users by recommending items that may be of interest to them. Traditionally, these systems use only user and item information. Over time, new information is being used, such as contextual information, which has improved the accuracy of the generated recommendations. In this work, we propose a context-aware recommender method that extracts contextual information from textual reviews using a word embedding based model. In addition, we propose two ways of considering textual contexts in recommender systems, the \"Context of Reviews\" and the \"Context of Items\". We evaluated our proposal by using the Yelp dataset (RecSysChallenge 2013); three baselines; and four context-aware recommender systems. In general, our proposal seems to be superior to the three baselines, mainly considering the \"Context of Items\", and the results were promising, allowing some lines of future work.","PeriodicalId":405966,"journal":{"name":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2018.00-64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Recommender systems aim to assist users by recommending items that may be of interest to them. Traditionally, these systems use only user and item information. Over time, new information is being used, such as contextual information, which has improved the accuracy of the generated recommendations. In this work, we propose a context-aware recommender method that extracts contextual information from textual reviews using a word embedding based model. In addition, we propose two ways of considering textual contexts in recommender systems, the "Context of Reviews" and the "Context of Items". We evaluated our proposal by using the Yelp dataset (RecSysChallenge 2013); three baselines; and four context-aware recommender systems. In general, our proposal seems to be superior to the three baselines, mainly considering the "Context of Items", and the results were promising, allowing some lines of future work.
改进上下文感知推荐系统的词嵌入模型探索
推荐系统旨在通过推荐用户可能感兴趣的项目来帮助用户。传统上,这些系统只使用用户和项目信息。随着时间的推移,新的信息被使用,例如上下文信息,这提高了生成的推荐的准确性。在这项工作中,我们提出了一种上下文感知推荐方法,该方法使用基于词嵌入的模型从文本评论中提取上下文信息。此外,我们提出了在推荐系统中考虑文本上下文的两种方法,即“评论上下文”和“条目上下文”。我们通过使用Yelp数据集(recsychallenge 2013)来评估我们的提案;三个基线;以及四个情境感知推荐系统。总的来说,我们的建议似乎优于三个基线,主要是考虑到“项目的上下文”,结果是有希望的,允许一些未来的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信