A risk-aware approach to stock portfolio allocation based on Deep Q-Networks

Jacopo Fior, Luca Cagliero
{"title":"A risk-aware approach to stock portfolio allocation based on Deep Q-Networks","authors":"Jacopo Fior, Luca Cagliero","doi":"10.1109/AICT55583.2022.10013578","DOIUrl":null,"url":null,"abstract":"Reinforcement Learning techniques have shown a great potential in the active allocation of stock portfolios. However, state-of-the-art solutions show limited stability and fairly high sensitivity to volatile market conditions. To tackle these issues, this paper presents a new risk-aware approach based on Deep Q-learning Networks. It leverages Quantile Regression DQNs to mitigate the underlying market risks and an action branching architecture to effectively handle high-dimensional stock spaces. Furthermore, it also introduces noise perturbations to the network’s weights aimed at self-tuning the degree of exploration for each input dimension. Based on the empirical simulations, which were carried out on the Dow Jones-30 stocks over a three-year period, the proposed system performs better than state-of-the-art RL solutions in terms of cumulative return, stability, and sharpe ratio.","PeriodicalId":441475,"journal":{"name":"2022 IEEE 16th International Conference on Application of Information and Communication Technologies (AICT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 16th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICT55583.2022.10013578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Reinforcement Learning techniques have shown a great potential in the active allocation of stock portfolios. However, state-of-the-art solutions show limited stability and fairly high sensitivity to volatile market conditions. To tackle these issues, this paper presents a new risk-aware approach based on Deep Q-learning Networks. It leverages Quantile Regression DQNs to mitigate the underlying market risks and an action branching architecture to effectively handle high-dimensional stock spaces. Furthermore, it also introduces noise perturbations to the network’s weights aimed at self-tuning the degree of exploration for each input dimension. Based on the empirical simulations, which were carried out on the Dow Jones-30 stocks over a three-year period, the proposed system performs better than state-of-the-art RL solutions in terms of cumulative return, stability, and sharpe ratio.
基于深度q网络的股票投资组合配置风险感知方法
强化学习技术在股票投资组合的主动配置方面显示出巨大的潜力。然而,最先进的解决方案显示出有限的稳定性和对波动的市场条件相当高的敏感性。为了解决这些问题,本文提出了一种基于深度q学习网络的新的风险感知方法。它利用分位数回归dqn来减轻潜在的市场风险,并利用动作分支架构来有效地处理高维库存空间。此外,它还引入了噪声扰动到网络的权重,旨在自调整每个输入维度的探索程度。基于对道琼斯30指数股票进行的为期三年的实证模拟,所提出的系统在累积回报、稳定性和夏普比率方面优于最先进的RL解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信