P. Talitha, I. Hafiz, R. Vincentius, P. Ardyono, L. Vita, H. Mauridhi
{"title":"Optimizing the Generator Critical Clearing Time using Super Capacitor Energy Storage in the Grid Power System with Differential Evolution Algorithm","authors":"P. Talitha, I. Hafiz, R. Vincentius, P. Ardyono, L. Vita, H. Mauridhi","doi":"10.1109/DEMPED.2019.8864843","DOIUrl":null,"url":null,"abstract":"Electrical machines such as generator can lose its synchronization due to the oscillation when a large disturbance happens. It becomes the primary concern in power stability, especially in transient stability because it leads to blackout condition. This paper proposed the addition of Super Capacitor Energy Storage (SCES) by absorbing the excess power when a disturbance happens. Equal Area Criterion (EAC) is used to obtain the value of Critical Clearing Time (CCT). The simulation is conducted in Single Machine Infinite Bus (SMIB). The value of CCT before adding SCES is 0.272s, while after adding SCES it becomes 0.485s. In order to optimize the CCT, a Differential Evolution (DE) Algorithm is used. In this paper, SCES strengthening components (KSCES) used as the optimized parameter. As a result, the value of SCES becomes 0.574s, which is higher than before adding SCES and before optimizing the parameter of SCES.","PeriodicalId":397001,"journal":{"name":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2019.8864843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Electrical machines such as generator can lose its synchronization due to the oscillation when a large disturbance happens. It becomes the primary concern in power stability, especially in transient stability because it leads to blackout condition. This paper proposed the addition of Super Capacitor Energy Storage (SCES) by absorbing the excess power when a disturbance happens. Equal Area Criterion (EAC) is used to obtain the value of Critical Clearing Time (CCT). The simulation is conducted in Single Machine Infinite Bus (SMIB). The value of CCT before adding SCES is 0.272s, while after adding SCES it becomes 0.485s. In order to optimize the CCT, a Differential Evolution (DE) Algorithm is used. In this paper, SCES strengthening components (KSCES) used as the optimized parameter. As a result, the value of SCES becomes 0.574s, which is higher than before adding SCES and before optimizing the parameter of SCES.