Behavior recognition via sparse spatio-temporal features

Piotr Dollár, V. Rabaud, G. Cottrell, Serge J. Belongie
{"title":"Behavior recognition via sparse spatio-temporal features","authors":"Piotr Dollár, V. Rabaud, G. Cottrell, Serge J. Belongie","doi":"10.1109/VSPETS.2005.1570899","DOIUrl":null,"url":null,"abstract":"A common trend in object recognition is to detect and leverage the use of sparse, informative feature points. The use of such features makes the problem more manageable while providing increased robustness to noise and pose variation. In this work we develop an extension of these ideas to the spatio-temporal case. For this purpose, we show that the direct 3D counterparts to commonly used 2D interest point detectors are inadequate, and we propose an alternative. Anchoring off of these interest points, we devise a recognition algorithm based on spatio-temporally windowed data. We present recognition results on a variety of datasets including both human and rodent behavior.","PeriodicalId":435841,"journal":{"name":"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2794","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSPETS.2005.1570899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2794

Abstract

A common trend in object recognition is to detect and leverage the use of sparse, informative feature points. The use of such features makes the problem more manageable while providing increased robustness to noise and pose variation. In this work we develop an extension of these ideas to the spatio-temporal case. For this purpose, we show that the direct 3D counterparts to commonly used 2D interest point detectors are inadequate, and we propose an alternative. Anchoring off of these interest points, we devise a recognition algorithm based on spatio-temporally windowed data. We present recognition results on a variety of datasets including both human and rodent behavior.
基于稀疏时空特征的行为识别
目标识别的一个共同趋势是检测和利用稀疏的、信息丰富的特征点。这些特征的使用使问题更易于管理,同时提供了对噪声和姿态变化的增强鲁棒性。在这项工作中,我们将这些想法扩展到时空案例。为此,我们表明直接的3D对应物与常用的2D兴趣点检测器是不够的,我们提出了一种替代方案。基于这些兴趣点,我们设计了一种基于时空窗口数据的识别算法。我们展示了各种数据集上的识别结果,包括人类和啮齿动物的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信