P. Burrage, Kevin Burrage, K. Kurowski, Michal T. Lorenc, Dan V. Nicolau, M. Swain, M. Ragan
{"title":"A Parallel Plasma Membrane Simulation","authors":"P. Burrage, Kevin Burrage, K. Kurowski, Michal T. Lorenc, Dan V. Nicolau, M. Swain, M. Ragan","doi":"10.1109/HIBI.2009.18","DOIUrl":null,"url":null,"abstract":"The plasma membrane protects a cell and even though it is only about 10nm thick it is an incredibly complex and crowded environment, with ensembles of channels, membrane and trans-membrane proteins and microdomains. Hence modelling transport and dynamical processes on the plasma membrane is computationally demanding and in order for a simulation to model an entire cell membrane for several real-time seconds, a high-performance computing implementation is essential. Here we describe the domain decomposition of a plasma membrane simulation in a grid-computing environment. We discuss the issues that arise in balancing the communication requirements with the computational complexity, in both a master-slave and a slave-slave communication model.We also discuss performance and fidelity limitations arising through the necessity of frequent inter-process communication. This parallel implementation will allow systems biology researchers to analyse computationally the complex dynamical processes taking place on an entire cell membrane over a non-trivial time scale.","PeriodicalId":403061,"journal":{"name":"2009 International Workshop on High Performance Computational Systems Biology","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on High Performance Computational Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIBI.2009.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The plasma membrane protects a cell and even though it is only about 10nm thick it is an incredibly complex and crowded environment, with ensembles of channels, membrane and trans-membrane proteins and microdomains. Hence modelling transport and dynamical processes on the plasma membrane is computationally demanding and in order for a simulation to model an entire cell membrane for several real-time seconds, a high-performance computing implementation is essential. Here we describe the domain decomposition of a plasma membrane simulation in a grid-computing environment. We discuss the issues that arise in balancing the communication requirements with the computational complexity, in both a master-slave and a slave-slave communication model.We also discuss performance and fidelity limitations arising through the necessity of frequent inter-process communication. This parallel implementation will allow systems biology researchers to analyse computationally the complex dynamical processes taking place on an entire cell membrane over a non-trivial time scale.