Efficient and universal method to design multiple field limiting rings for power devices

M. Mochizuki, Hiroyuki Tanaka, H. Hayashi
{"title":"Efficient and universal method to design multiple field limiting rings for power devices","authors":"M. Mochizuki, Hiroyuki Tanaka, H. Hayashi","doi":"10.1109/SISPAD.2014.6931562","DOIUrl":null,"url":null,"abstract":"For the first time, an efficient and universal method to design multiple field limiting rings (FLR) structure, which applicable to power devices with thin drift layer is proposed. Avalanche breakdown simulations of simplified structures are performed in each three area; the near main junction area, the outmost area, and the other. From simulation results, optimal spacing between each neighboring FLR is efficiently extracted. Phenomena related breakdown voltage determination in each area are also clarified. We demonstrate that the edge termination structures designed along our guidelines succeed to obtain the target blocking voltage in different 600 V class processes.","PeriodicalId":101858,"journal":{"name":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"63 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2014.6931562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the first time, an efficient and universal method to design multiple field limiting rings (FLR) structure, which applicable to power devices with thin drift layer is proposed. Avalanche breakdown simulations of simplified structures are performed in each three area; the near main junction area, the outmost area, and the other. From simulation results, optimal spacing between each neighboring FLR is efficiently extracted. Phenomena related breakdown voltage determination in each area are also clarified. We demonstrate that the edge termination structures designed along our guidelines succeed to obtain the target blocking voltage in different 600 V class processes.
一种高效通用的电力器件多场限环设计方法
首次提出了一种适用于具有薄漂移层的功率器件的多场限流环(FLR)结构的高效通用设计方法。在三个区域分别进行了简化结构的雪崩击穿模拟;靠近主路口的区域,最外面的区域,以及其他。根据仿真结果,有效地提取了相邻FLR之间的最优间距。阐明了各区域击穿电压测定的相关现象。我们证明了沿我们的指南设计的边缘终端结构成功地在不同的600 V级工艺中获得目标阻断电压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信