{"title":"Continuous Operation of a Bragg Diffraction Type Electrooptic Frequency Shifter at 16 GHz with 65% Efficiency","authors":"S. Hisatake, K. Hattori, T. Nagatsuma","doi":"10.1155/2012/676785","DOIUrl":null,"url":null,"abstract":"We demonstrate for the first time the continuous operation of a Bragg diffraction type electrooptic (EO) frequency shifter using a 16 GHz modulation signal. Because \nfrequency shifting is based on the Bragg diffraction from an EO traveling phase grating (ETPG), this device can operate even in the millimeter-wave (>30 GHz) range or higher frequency range. The ETPG is generated based on the interaction between a modulation microwave guided by a microstrip line and a copropagating lightwave guided by a planner waveguide in a domain-engineered LiTaO3 EO crystal. In this work, the modulation power efficiency was improved by a factor of 11 compared with that of bulk devices by thinning the substrate so that the modulation electric field in the optical waveguide was enhanced. A shifting efficiency of 65% was achieved at the modulation power of 3 W.","PeriodicalId":156432,"journal":{"name":"Advances in Optical Technologies","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/676785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We demonstrate for the first time the continuous operation of a Bragg diffraction type electrooptic (EO) frequency shifter using a 16 GHz modulation signal. Because
frequency shifting is based on the Bragg diffraction from an EO traveling phase grating (ETPG), this device can operate even in the millimeter-wave (>30 GHz) range or higher frequency range. The ETPG is generated based on the interaction between a modulation microwave guided by a microstrip line and a copropagating lightwave guided by a planner waveguide in a domain-engineered LiTaO3 EO crystal. In this work, the modulation power efficiency was improved by a factor of 11 compared with that of bulk devices by thinning the substrate so that the modulation electric field in the optical waveguide was enhanced. A shifting efficiency of 65% was achieved at the modulation power of 3 W.