{"title":"Post-copy based live virtual machine migration using adaptive pre-paging and dynamic self-ballooning","authors":"M. R. Hines, Kartik Gopalan","doi":"10.1145/1508293.1508301","DOIUrl":null,"url":null,"abstract":"We present the design, implementation, and evaluation of post-copy based live migration for virtual machines (VMs) across a Gigabit LAN. Live migration is an indispensable feature in today's virtualization technologies. Post-copy migration defers the transfer of a VM's memory contents until after its processor state has been sent to the target host. This deferral is in contrast to the traditional pre-copy approach, which first copies the memory state over multiple iterations followed by a final transfer of the processor state. The post-copy strategy can provide a \"win-win\" by reducing total migration time closer to its equivalent time achieved by non-live VM migration. This is done while maintaining the liveness benefits of the pre-copy approach. We compare post-copy extensively against the traditional pre-copy approach on top of the Xen Hypervisor. Using a range of VM workloads we show improvements in several migration metrics including pages transferred, total migration time and network overhead. We facilitate the use of post-copy with adaptive pre-paging in order to eliminate all duplicate page transmissions. Our implementation is able to reduce the number of network-bound page faults to within 21% of the VM's working set for large workloads. Finally, we eliminate the transfer of free memory pages in both migration schemes through a dynamic self-ballooning (DSB) mechanism. DSB periodically releases free pages in a guest VM back to the hypervisor and significantly speeds up migration with negligible performance degradation.","PeriodicalId":202844,"journal":{"name":"International Conference on Virtual Execution Environments","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"446","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Virtual Execution Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1508293.1508301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 446
Abstract
We present the design, implementation, and evaluation of post-copy based live migration for virtual machines (VMs) across a Gigabit LAN. Live migration is an indispensable feature in today's virtualization technologies. Post-copy migration defers the transfer of a VM's memory contents until after its processor state has been sent to the target host. This deferral is in contrast to the traditional pre-copy approach, which first copies the memory state over multiple iterations followed by a final transfer of the processor state. The post-copy strategy can provide a "win-win" by reducing total migration time closer to its equivalent time achieved by non-live VM migration. This is done while maintaining the liveness benefits of the pre-copy approach. We compare post-copy extensively against the traditional pre-copy approach on top of the Xen Hypervisor. Using a range of VM workloads we show improvements in several migration metrics including pages transferred, total migration time and network overhead. We facilitate the use of post-copy with adaptive pre-paging in order to eliminate all duplicate page transmissions. Our implementation is able to reduce the number of network-bound page faults to within 21% of the VM's working set for large workloads. Finally, we eliminate the transfer of free memory pages in both migration schemes through a dynamic self-ballooning (DSB) mechanism. DSB periodically releases free pages in a guest VM back to the hypervisor and significantly speeds up migration with negligible performance degradation.