Web document retrieval using manifold learning and ACO algorithm

Ziqiang Wang, Sun Xia
{"title":"Web document retrieval using manifold learning and ACO algorithm","authors":"Ziqiang Wang, Sun Xia","doi":"10.1109/ICBNMT.2009.5348468","DOIUrl":null,"url":null,"abstract":"To efficiently deal with high dimensionality and precision problems in document retrieval, a novel document retrieval algorithm based on manifold learning and ant colony optimization(ACO) algorithm is proposed. The high-dimensional document data are first projected into lower-dimensional feature space with neighborhood preserving embedding (NPE) algorithm, the ACO algorithm is then applied to retrieve relevant documents in the reduced lower-dimensionality document feature space. Extensive experiments on real-world data set demonstrate the effectiveness of the proposed algorithm.","PeriodicalId":267128,"journal":{"name":"2009 2nd IEEE International Conference on Broadband Network & Multimedia Technology","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd IEEE International Conference on Broadband Network & Multimedia Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBNMT.2009.5348468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

To efficiently deal with high dimensionality and precision problems in document retrieval, a novel document retrieval algorithm based on manifold learning and ant colony optimization(ACO) algorithm is proposed. The high-dimensional document data are first projected into lower-dimensional feature space with neighborhood preserving embedding (NPE) algorithm, the ACO algorithm is then applied to retrieve relevant documents in the reduced lower-dimensionality document feature space. Extensive experiments on real-world data set demonstrate the effectiveness of the proposed algorithm.
基于流形学习和蚁群算法的Web文档检索
为了有效地解决文档检索中的高维、高精度问题,提出了一种基于流形学习和蚁群优化(ACO)算法的文档检索算法。首先利用邻域保持嵌入(NPE)算法将高维文档数据投影到低维特征空间中,然后利用蚁群算法在降维后的低维文档特征空间中检索相关文档。在实际数据集上的大量实验证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信