{"title":"Weak nonhomogeneous wavelet dual frames for Walsh reducing subspace of L2(ℝ+)","authors":"Yan Zhang, Yun‐Zhang Li","doi":"10.1142/s0219691321500405","DOIUrl":null,"url":null,"abstract":"In wavelet analysis, refinable functions are the bases of extension principles for constructing (weak) dual wavelet frames for [Formula: see text] and its reducing subspaces. This paper addresses refinable function-based dual wavelet frames construction in Walsh reducing subspaces of [Formula: see text]. We obtain a Walsh–Fourier transform domain characterization for weak [Formula: see text]-adic nonhomogeneous dual wavelet frames; and present a mixed oblique extension principle for constructing weak [Formula: see text]-adic nonhomogeneous dual wavelet frames in Walsh reducing subspaces of [Formula: see text].","PeriodicalId":158567,"journal":{"name":"Int. J. Wavelets Multiresolution Inf. Process.","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Wavelets Multiresolution Inf. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219691321500405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In wavelet analysis, refinable functions are the bases of extension principles for constructing (weak) dual wavelet frames for [Formula: see text] and its reducing subspaces. This paper addresses refinable function-based dual wavelet frames construction in Walsh reducing subspaces of [Formula: see text]. We obtain a Walsh–Fourier transform domain characterization for weak [Formula: see text]-adic nonhomogeneous dual wavelet frames; and present a mixed oblique extension principle for constructing weak [Formula: see text]-adic nonhomogeneous dual wavelet frames in Walsh reducing subspaces of [Formula: see text].