Development of omnidirectional self-balancing robot

H. Han, Tiong Yih Han, H. S. Jo
{"title":"Development of omnidirectional self-balancing robot","authors":"H. Han, Tiong Yih Han, H. S. Jo","doi":"10.1109/ROMA.2014.7295862","DOIUrl":null,"url":null,"abstract":"The omnidirectional self-balancing robot or otherwise known as ballbot belongs to a special class of balancing robots. With only one contact point with the ground, ballbot is able to achieve a higher degree of agility with a lower footprint than most mobile robots. While practical applications of balancing platforms such as Segway PT have gained much traction over the last decade, directional limitations in movements are still prevalent in wheeled robots. To achieve omnidirectional motion, a ball is used as a replacement to wheels. Similar to the concept of inverted pendulum, self-balancing is achieved using a closed-loop control system. In this paper, we propose the implementation of a minimalist and low cost ball-balancing robot that utilizes off-the-shelf components that are widely available in the market with the aim to create an affordable platform to study and design control strategies for ballbots.","PeriodicalId":240232,"journal":{"name":"2014 IEEE International Symposium on Robotics and Manufacturing Automation (ROMA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Robotics and Manufacturing Automation (ROMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMA.2014.7295862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The omnidirectional self-balancing robot or otherwise known as ballbot belongs to a special class of balancing robots. With only one contact point with the ground, ballbot is able to achieve a higher degree of agility with a lower footprint than most mobile robots. While practical applications of balancing platforms such as Segway PT have gained much traction over the last decade, directional limitations in movements are still prevalent in wheeled robots. To achieve omnidirectional motion, a ball is used as a replacement to wheels. Similar to the concept of inverted pendulum, self-balancing is achieved using a closed-loop control system. In this paper, we propose the implementation of a minimalist and low cost ball-balancing robot that utilizes off-the-shelf components that are widely available in the market with the aim to create an affordable platform to study and design control strategies for ballbots.
全向自平衡机器人的研制
全向自平衡机器人又称圆球机器人,属于一类特殊的平衡机器人。与大多数移动机器人相比,ballbot与地面只有一个接触点,能够以更小的占地面积实现更高程度的敏捷性。虽然平衡平台(如Segway PT)的实际应用在过去十年中获得了很大的牵引力,但轮式机器人的运动方向限制仍然普遍存在。为了实现全方位的运动,一个球被用来代替轮子。与倒立摆的概念类似,自平衡是通过闭环控制系统实现的。在本文中,我们提出了一种极简和低成本的球平衡机器人的实现,该机器人利用市场上广泛可用的现成组件,旨在创建一个经济实惠的平台来研究和设计球机器人的控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信