KFU NLP Team at SMM4H 2021 Tasks: Cross-lingual and Cross-modal BERT-based Models for Adverse Drug Effects

Andrey Sakhovskiy, Z. Miftahutdinov, E. Tutubalina
{"title":"KFU NLP Team at SMM4H 2021 Tasks: Cross-lingual and Cross-modal BERT-based Models for Adverse Drug Effects","authors":"Andrey Sakhovskiy, Z. Miftahutdinov, E. Tutubalina","doi":"10.18653/V1/2021.SMM4H-1.6","DOIUrl":null,"url":null,"abstract":"This paper describes neural models developed for the Social Media Mining for Health (SMM4H) 2021 Shared Task. We participated in two tasks on classification of tweets that mention an adverse drug effect (ADE) (Tasks 1a & 2) and two tasks on extraction of ADE concepts (Tasks 1b & 1c). For classification, we investigate the impact of joint use of BERTbased language models and drug embeddings obtained by chemical structure BERT-based encoder. The BERT-based multimodal models ranked first and second on classification of Russian (Task 2) and English tweets (Task 1a) with the F1 scores of 57% and 61%, respectively. For Task 1b and 1c, we utilized the previous year’s best solution based on the EnDR-BERT model with additional corpora. Our model achieved the best results in Task 1c, obtaining an F1 of 29%.","PeriodicalId":378985,"journal":{"name":"Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/V1/2021.SMM4H-1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper describes neural models developed for the Social Media Mining for Health (SMM4H) 2021 Shared Task. We participated in two tasks on classification of tweets that mention an adverse drug effect (ADE) (Tasks 1a & 2) and two tasks on extraction of ADE concepts (Tasks 1b & 1c). For classification, we investigate the impact of joint use of BERTbased language models and drug embeddings obtained by chemical structure BERT-based encoder. The BERT-based multimodal models ranked first and second on classification of Russian (Task 2) and English tweets (Task 1a) with the F1 scores of 57% and 61%, respectively. For Task 1b and 1c, we utilized the previous year’s best solution based on the EnDR-BERT model with additional corpora. Our model achieved the best results in Task 1c, obtaining an F1 of 29%.
KFU NLP团队在SMM4H 2021任务:跨语言和跨模式基于bert的药物不良反应模型
本文描述了为社交媒体挖掘健康(SMM4H) 2021共享任务开发的神经模型。我们参与了两个关于提及药物不良反应(ADE)的推文分类的任务(任务1a和2)和两个关于ADE概念提取的任务(任务1b和1c)。在分类方面,我们研究了基于bert的语言模型和基于bert的化学结构编码器获得的药物嵌入的联合使用的影响。基于bert的多模态模型在俄语(Task 2)和英语tweets (Task 1a)的分类上分别以57%和61%的F1得分排名第一和第二。对于任务1b和1c,我们使用了基于EnDR-BERT模型和额外语料库的前一年的最佳解决方案。我们的模型在Task 1c中取得了最好的结果,获得了29%的F1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信