Hardware Architecture of EKF-SLAM's Prediction Stage and its FPGA Implementation

Slama Hammia, A. Hatim, A. Bouaaddi
{"title":"Hardware Architecture of EKF-SLAM's Prediction Stage and its FPGA Implementation","authors":"Slama Hammia, A. Hatim, A. Bouaaddi","doi":"10.1109/ICDATA52997.2021.00036","DOIUrl":null,"url":null,"abstract":"Simultaneous Localisation and Mapping (SLAM) allows robot equipped with sensors to map its environment while locating itself in space. However, due to the computational complexity of SLAM algorithms, researches are focusing on reducing computation complexity and developing embedded systems on low resources and low complexity platforms to achieve real time requirements. Field-Programmable Gate Array (FPGA) is an attractive real-time platform for SLAM systems as they are low power and high performance. In this work, we present an EKF-SLAM (Extended Kalman Filter SLAM) prediction stage hardware architecture design and implementation on FPGA. We implemented the design using an FPGA Cyclone 2. The design can reach up to 114 MHz and uses 3507 logic elements, and it respect the real time requirements.","PeriodicalId":231714,"journal":{"name":"2021 International Conference on Digital Age & Technological Advances for Sustainable Development (ICDATA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Digital Age & Technological Advances for Sustainable Development (ICDATA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDATA52997.2021.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Simultaneous Localisation and Mapping (SLAM) allows robot equipped with sensors to map its environment while locating itself in space. However, due to the computational complexity of SLAM algorithms, researches are focusing on reducing computation complexity and developing embedded systems on low resources and low complexity platforms to achieve real time requirements. Field-Programmable Gate Array (FPGA) is an attractive real-time platform for SLAM systems as they are low power and high performance. In this work, we present an EKF-SLAM (Extended Kalman Filter SLAM) prediction stage hardware architecture design and implementation on FPGA. We implemented the design using an FPGA Cyclone 2. The design can reach up to 114 MHz and uses 3507 logic elements, and it respect the real time requirements.
EKF-SLAM预测台硬件架构及FPGA实现
同时定位和测绘(SLAM)允许机器人装备传感器,在空间定位自己的同时绘制环境地图。然而,由于SLAM算法的计算复杂度,研究的重点是降低计算复杂度,在低资源、低复杂度的平台上开发嵌入式系统,以达到实时性要求。现场可编程门阵列(FPGA)以其低功耗、高性能的特点成为SLAM系统的实时平台。在这项工作中,我们提出了一个EKF-SLAM(扩展卡尔曼滤波SLAM)预测阶段的硬件架构设计和FPGA实现。我们使用FPGA Cyclone 2实现了该设计。该设计最高可达114mhz,使用3507个逻辑元件,符合实时性要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信