A modular approach for co-simulations of integrated multi-energy systems: Coupling multi-energy grids in existing environments of grid planning & operation tools

Simon Drauz, Christian Spalthoff, Matthias Würtenberg, Tanja M. Kneikse, M. Braun
{"title":"A modular approach for co-simulations of integrated multi-energy systems: Coupling multi-energy grids in existing environments of grid planning & operation tools","authors":"Simon Drauz, Christian Spalthoff, Matthias Würtenberg, Tanja M. Kneikse, M. Braun","doi":"10.1109/MSCPES.2018.8405395","DOIUrl":null,"url":null,"abstract":"Renewable energy sources are already the profound deliverers of electrical energy in Germany, while the problem to manage the gap between volatile prosumers and mostly user-dependent consumers are still not solved. One approach to overcome this challenge is the use of the given infrastructure of gas and district heating systems acting as buffer. However, not talking about simulating integrated multi-energy systems, especially the embedment of these in already existing systems is going to be a massive challenge in the future. In this paper, we introduce a way how systems widely used in different energy sectors can be combined and managed together. The approach follows a modular concept easily connecting well-known systems with new algorithms and model extensions. This shall be exemplified shown by creating an integrated multi-energy system consisting of an electrical and gas grid both modelled in PSS®Sincal distributed by SIEMENS.","PeriodicalId":196649,"journal":{"name":"2018 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSCPES.2018.8405395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Renewable energy sources are already the profound deliverers of electrical energy in Germany, while the problem to manage the gap between volatile prosumers and mostly user-dependent consumers are still not solved. One approach to overcome this challenge is the use of the given infrastructure of gas and district heating systems acting as buffer. However, not talking about simulating integrated multi-energy systems, especially the embedment of these in already existing systems is going to be a massive challenge in the future. In this paper, we introduce a way how systems widely used in different energy sectors can be combined and managed together. The approach follows a modular concept easily connecting well-known systems with new algorithms and model extensions. This shall be exemplified shown by creating an integrated multi-energy system consisting of an electrical and gas grid both modelled in PSS®Sincal distributed by SIEMENS.
集成多能系统协同模拟的模块化方法:在现有的网格规划和操作工具环境中耦合多能网格
在德国,可再生能源已经成为重要的电力来源,而管理不稳定的产消者与主要依赖用户的消费者之间差距的问题仍未解决。克服这一挑战的一种方法是利用天然气和区域供热系统的现有基础设施作为缓冲。然而,不谈论模拟集成的多能系统,特别是将这些系统嵌入到现有系统中,将是未来的巨大挑战。在本文中,我们介绍了一种如何将广泛应用于不同能源部门的系统组合在一起进行管理的方法。该方法遵循模块化概念,可以轻松地将已知系统与新算法和模型扩展连接起来。这将通过创建一个集成的多能系统来证明,该系统由西门子分布的PSS®Sincal建模的电力和燃气网络组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信