Comparison of Very Smooth Cell-Model Trajectories Using Five Symplectic and Two Runge-Kutta Integrators

W. G. Hoover, C. G. Hoover
{"title":"Comparison of Very Smooth Cell-Model Trajectories Using Five Symplectic and Two Runge-Kutta Integrators","authors":"W. G. Hoover, C. G. Hoover","doi":"10.12921/CMST.2015.21.03.001","DOIUrl":null,"url":null,"abstract":"Time-reversible symplectic methods, which are precisely compatible with Liouville's phase-volume-conservation theorem, are often recommended for computational simulations of Hamiltonian mechanics. Lack of energy drift is an apparent advantage of such methods. But all numerical methods are susceptible to Lyapunov instability, which severely limits the maximum time for which chaotic solutions can be \"accurate\". The \"advantages\" of higher-order methods are lost rapidly for typical chaotic Hamiltonians. We illustrate these difficulties for a useful reproducible test case, the two-dimensional one-particle cell model with specially smooth forces. This Hamiltonian problem is chaotic and occurs on a three-dimensional constant-energy shell, the minimum dimension for chaos. We benchmark the problem with quadruple-precision trajectories using the fourth-order Candy-Rozmus, fifth-order Runge-Kutta, and eighth-order Schlier-Seiter-Teloy integrators. We compare the last, most-accurate particle trajectories to those from six double-precision algorithms, four symplectic and two Runge-Kutta.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12921/CMST.2015.21.03.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Time-reversible symplectic methods, which are precisely compatible with Liouville's phase-volume-conservation theorem, are often recommended for computational simulations of Hamiltonian mechanics. Lack of energy drift is an apparent advantage of such methods. But all numerical methods are susceptible to Lyapunov instability, which severely limits the maximum time for which chaotic solutions can be "accurate". The "advantages" of higher-order methods are lost rapidly for typical chaotic Hamiltonians. We illustrate these difficulties for a useful reproducible test case, the two-dimensional one-particle cell model with specially smooth forces. This Hamiltonian problem is chaotic and occurs on a three-dimensional constant-energy shell, the minimum dimension for chaos. We benchmark the problem with quadruple-precision trajectories using the fourth-order Candy-Rozmus, fifth-order Runge-Kutta, and eighth-order Schlier-Seiter-Teloy integrators. We compare the last, most-accurate particle trajectories to those from six double-precision algorithms, four symplectic and two Runge-Kutta.
使用五个辛积分器和两个龙格-库塔积分器比较非常光滑的细胞模型轨迹
时间可逆辛方法与刘维尔的相-体积守恒定理精确兼容,常被推荐用于哈密顿力学的计算模拟。这种方法的明显优点是没有能量漂移。但是所有的数值方法都容易受到李雅普诺夫不稳定性的影响,这严重限制了混沌解能够“精确”的最大时间。对于典型的混沌哈密顿量,高阶方法的“优点”很快就丧失了。我们用一个有用的可重复的测试案例来说明这些困难,即具有特别光滑力的二维单粒子细胞模型。这个哈密顿问题是混沌的,并且发生在三维等能壳层上,这是混沌的最小维。我们使用四阶Candy-Rozmus,五阶Runge-Kutta和八阶Schlier-Seiter-Teloy积分器对四精度轨迹进行基准测试。我们将最后最精确的粒子轨迹与六种双精度算法(四种辛算法和两种龙格-库塔算法)的粒子轨迹进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信