Prediction of DNA-binding protein based on alpha shape modeling

Weiqiang Zhou, Hong Yan
{"title":"Prediction of DNA-binding protein based on alpha shape modeling","authors":"Weiqiang Zhou, Hong Yan","doi":"10.1109/BIBM.2010.5706529","DOIUrl":null,"url":null,"abstract":"Previous studies about protein-DNA interaction focused on the bound structure of DNA-binding proteins and provided good but not practical results. In our work, we apply an alpha shape model to represent the surface structure of the protein-DNA complex and use structural alignment to develop an interface-atom curvature-dependent conditional probability discriminatory function for the prediction of unbound DNA-binding protein. The proposed method provides good performance in predicting unbound structure of DNA-binding protein which is potentially useful in many fields. Computer experiment results show that the curvature-dependent formalism with the optimal parameters can achieve sensitivity ranges from 48.08% to 44.23% and specificity ranges from 73.82% to 84.29%.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"637 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Previous studies about protein-DNA interaction focused on the bound structure of DNA-binding proteins and provided good but not practical results. In our work, we apply an alpha shape model to represent the surface structure of the protein-DNA complex and use structural alignment to develop an interface-atom curvature-dependent conditional probability discriminatory function for the prediction of unbound DNA-binding protein. The proposed method provides good performance in predicting unbound structure of DNA-binding protein which is potentially useful in many fields. Computer experiment results show that the curvature-dependent formalism with the optimal parameters can achieve sensitivity ranges from 48.08% to 44.23% and specificity ranges from 73.82% to 84.29%.
基于α形状模型的dna结合蛋白预测
以往关于蛋白质- dna相互作用的研究主要集中在dna结合蛋白的结合结构上,取得了较好的但不实用的结果。在我们的工作中,我们应用α形状模型来表示蛋白质- dna复合物的表面结构,并使用结构比对来开发界面原子曲率依赖的条件概率判别函数,用于预测未结合的dna结合蛋白。该方法在预测dna结合蛋白的非结合结构方面具有良好的性能,在许多领域具有潜在的应用价值。计算机实验结果表明,采用最优参数的曲率相关形式可以实现48.08% ~ 44.23%的灵敏度和73.82% ~ 84.29%的特异度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信