{"title":"Experimental Investigating the Impact of Ionic Liquid on PET’s Properties","authors":"W. Ahmed","doi":"10.1115/IMECE2018-86854","DOIUrl":null,"url":null,"abstract":"This study presents an experimental laboratory investigation done on the Polyethylene terephthalate – PET that is used for food grade (water bottle) by mixing with ionic liquid. Both thermal and mechanical properties with a varying weight percentage of ionic liquid are investigated. Mainly, at different mixing ratios of PET-Ionic liquid of (2, 3, 5, 7 and 10%), impact of the ionic liquid on the characteristics of the PET are examined through MFI (melt flow index), differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA), nanoindentation methods as well as Fourier Transform Infrared (FTIR) spectroscopy. In general, the estimated results indicated that the stiffness as well as the hardness acquired from nanoindentation test for the PET blends, decrease as long as the concentration increases.","PeriodicalId":119074,"journal":{"name":"Volume 12: Materials: Genetics to Structures","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 12: Materials: Genetics to Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an experimental laboratory investigation done on the Polyethylene terephthalate – PET that is used for food grade (water bottle) by mixing with ionic liquid. Both thermal and mechanical properties with a varying weight percentage of ionic liquid are investigated. Mainly, at different mixing ratios of PET-Ionic liquid of (2, 3, 5, 7 and 10%), impact of the ionic liquid on the characteristics of the PET are examined through MFI (melt flow index), differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA), nanoindentation methods as well as Fourier Transform Infrared (FTIR) spectroscopy. In general, the estimated results indicated that the stiffness as well as the hardness acquired from nanoindentation test for the PET blends, decrease as long as the concentration increases.