Social negative bootstrapping for visual categorization

Xirong Li, Cees G. M. Snoek, M. Worring, A. Smeulders
{"title":"Social negative bootstrapping for visual categorization","authors":"Xirong Li, Cees G. M. Snoek, M. Worring, A. Smeulders","doi":"10.1145/1991996.1992008","DOIUrl":null,"url":null,"abstract":"To learn classifiers for many visual categories, obtaining labeled training examples in an efficient way is crucial. Since a classifier tends to misclassify negative examples which are visually similar to positive examples, inclusion of such informative negatives should be stressed in the learning process. However, they are unlikely to be hit by random sampling, the de facto standard in literature. In this paper, we go beyond random sampling by introducing a novel social negative bootstrapping approach. Given a visual category and a few positive examples, the proposed approach adaptively and iteratively harvests informative negatives from a large amount of social-tagged images. To label negative examples without human interaction, we design an effective virtual labeling procedure based on simple tag reasoning. Virtual labeling, in combination with adaptive sampling, enables us to select the most misclassified negatives as the informative samples. Learning from the positive set and the informative negative sets results in visual classifiers with higher accuracy. Experiments on two present-day image benchmarks employing 650K virtually labeled negative examples show the viability of the proposed approach. On a popular visual categorization benchmark our precision at 20 increases by 34%, compared to baselines trained on randomly sampled negatives. We achieve more accurate visual categorization without the need of manually labeling any negatives.","PeriodicalId":390933,"journal":{"name":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1991996.1992008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

To learn classifiers for many visual categories, obtaining labeled training examples in an efficient way is crucial. Since a classifier tends to misclassify negative examples which are visually similar to positive examples, inclusion of such informative negatives should be stressed in the learning process. However, they are unlikely to be hit by random sampling, the de facto standard in literature. In this paper, we go beyond random sampling by introducing a novel social negative bootstrapping approach. Given a visual category and a few positive examples, the proposed approach adaptively and iteratively harvests informative negatives from a large amount of social-tagged images. To label negative examples without human interaction, we design an effective virtual labeling procedure based on simple tag reasoning. Virtual labeling, in combination with adaptive sampling, enables us to select the most misclassified negatives as the informative samples. Learning from the positive set and the informative negative sets results in visual classifiers with higher accuracy. Experiments on two present-day image benchmarks employing 650K virtually labeled negative examples show the viability of the proposed approach. On a popular visual categorization benchmark our precision at 20 increases by 34%, compared to baselines trained on randomly sampled negatives. We achieve more accurate visual categorization without the need of manually labeling any negatives.
视觉分类的社会负性自举
为了学习许多视觉类别的分类器,以有效的方式获得标记的训练样例是至关重要的。由于分类器倾向于对视觉上与正例相似的否定样例进行错误分类,因此在学习过程中应强调包含此类信息性否定样例。然而,他们不太可能受到随机抽样的影响,这是文学中事实上的标准。在本文中,我们通过引入一种新的社会负自举方法来超越随机抽样。给定一个视觉类别和一些积极的例子,所提出的方法自适应迭代地从大量的社会标签图像中收获信息消极。为了在没有人工干预的情况下标记负面示例,我们设计了一个基于简单标签推理的有效虚拟标记程序。虚拟标签与自适应采样相结合,使我们能够选择最错误分类的底片作为信息样本。从正集和信息量大的负集中学习可以得到精度更高的视觉分类器。在使用650K虚拟标记负例的两个当今图像基准上的实验表明了所提出方法的可行性。在一个流行的视觉分类基准上,与随机抽样的阴性基线相比,我们在20的精确度提高了34%。我们实现了更准确的视觉分类,而无需手动标记任何底片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信