{"title":"Real-time Interactions and Synchronization of Voxel-based Collaborative Virtual Environments","authors":"Eric Acosta, Alan Liu","doi":"10.1109/3DUI.2007.340785","DOIUrl":null,"url":null,"abstract":"Collaborative virtual environments (C-VE) facilitate team-oriented training on virtual reality-based surgical simulators. Many C-VEs replicate the VE on each user's machine to allow for real-time interactions. However, this solution does not work well when modifying voxel-based C-VEs because large and frequent volumetric updates make it difficult to synchronize the C-VE. This paper describes a hybrid depth-buffered image (DBI) and geometry-based rendering method created to simulate visual interactions between local virtual bone cutting tools and remotely maintained volumetric bone material for a craniotomy simulator. For real-time interactions, users only store a DBI of the volumetric C-VE and composite it with rendered images of surgical tools. Additionally, we describe methods to combat network bandwidth/latency to remotely simulate haptic and bone drilling interactions between users' tools and the volumetric VE. For haptic feedback, a multi-rate solution (Cavusoglu and Tendick, 2000) allows users to construct a local approximation of the volumetric C-VE to compute new forces. Only 2D DBI updates are required to synchronize different users when the bone changes due to drilling. Our approach provides an improved performance over a replicated VE that uses 3D model-based updates","PeriodicalId":301785,"journal":{"name":"2007 IEEE Symposium on 3D User Interfaces","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on 3D User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DUI.2007.340785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Collaborative virtual environments (C-VE) facilitate team-oriented training on virtual reality-based surgical simulators. Many C-VEs replicate the VE on each user's machine to allow for real-time interactions. However, this solution does not work well when modifying voxel-based C-VEs because large and frequent volumetric updates make it difficult to synchronize the C-VE. This paper describes a hybrid depth-buffered image (DBI) and geometry-based rendering method created to simulate visual interactions between local virtual bone cutting tools and remotely maintained volumetric bone material for a craniotomy simulator. For real-time interactions, users only store a DBI of the volumetric C-VE and composite it with rendered images of surgical tools. Additionally, we describe methods to combat network bandwidth/latency to remotely simulate haptic and bone drilling interactions between users' tools and the volumetric VE. For haptic feedback, a multi-rate solution (Cavusoglu and Tendick, 2000) allows users to construct a local approximation of the volumetric C-VE to compute new forces. Only 2D DBI updates are required to synchronize different users when the bone changes due to drilling. Our approach provides an improved performance over a replicated VE that uses 3D model-based updates