Cluster Analysis of Time-Series Medical Data Based on the Trajectory Representation and Multiscale Comparison Techniques

S. Hirano, S. Tsumoto
{"title":"Cluster Analysis of Time-Series Medical Data Based on the Trajectory Representation and Multiscale Comparison Techniques","authors":"S. Hirano, S. Tsumoto","doi":"10.1109/ICDM.2006.33","DOIUrl":null,"url":null,"abstract":"This paper presents a cluster analysis method for multidimensional time-series data on clinical laboratory examinations. Our method represents the time series of test results as trajectories in multidimensional space, and compares their structural similarity by using the multiscale comparison technique. It enables us to find the part-to-part correspondences between two trajectories, taking into account the relationships between different tests. The resultant dissimilarity can be further used with clustering algorithms for finding the groups of similar cases. The method was applied to the cluster analysis of Albumin-Platelet data in the chronic hepatitis dataset. The results denonstrated that it could form interesting groups of cases that have high correspondence to the fibrotic stages.","PeriodicalId":356443,"journal":{"name":"Sixth International Conference on Data Mining (ICDM'06)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Data Mining (ICDM'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2006.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

This paper presents a cluster analysis method for multidimensional time-series data on clinical laboratory examinations. Our method represents the time series of test results as trajectories in multidimensional space, and compares their structural similarity by using the multiscale comparison technique. It enables us to find the part-to-part correspondences between two trajectories, taking into account the relationships between different tests. The resultant dissimilarity can be further used with clustering algorithms for finding the groups of similar cases. The method was applied to the cluster analysis of Albumin-Platelet data in the chronic hepatitis dataset. The results denonstrated that it could form interesting groups of cases that have high correspondence to the fibrotic stages.
基于轨迹表示和多尺度比较技术的时间序列医疗数据聚类分析
本文提出了一种聚类分析方法,用于临床实验室检查的多维时间序列数据。该方法将测试结果的时间序列表示为多维空间中的轨迹,并利用多尺度比较技术比较它们的结构相似性。它使我们能够找到两个轨迹之间的部分对部分对应关系,同时考虑到不同测试之间的关系。由此产生的不相似性可以进一步与聚类算法一起使用,以找到相似案例的组。该方法应用于慢性肝炎数据集中白蛋白-血小板数据的聚类分析。结果表明,它可以形成与纤维化阶段高度对应的有趣病例组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信