News Recommendation Based on Collaborative Semantic Topic Models and Recommendation Adjustment

Yu-Shan Liao, Jun-Yi Lu, Duen-Ren Liu
{"title":"News Recommendation Based on Collaborative Semantic Topic Models and Recommendation Adjustment","authors":"Yu-Shan Liao, Jun-Yi Lu, Duen-Ren Liu","doi":"10.1109/ICMLC48188.2019.8949259","DOIUrl":null,"url":null,"abstract":"Providing news recommendations is an important trend for online news websites to attract more users and create more benefits. In this research, we propose a novel recommendation approach for recommending news articles. We propose A Collaborative Semantic Topic Model and an ensemble model to predict user preferences based on combining Matrix Factorization with articles' semantic latent topics derived from word embedding and Latent Dirichlet Allocation. The proposed ensemble model is further integrated with a recommendation adjustment mechanism to adjust users' online recommendation lists. We evaluate the proposed approach via offline experiments and online evaluation on a real news website. The experimental result demonstrates that our proposed approach can improve the recommendation quality of recommending news articles.","PeriodicalId":221349,"journal":{"name":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC48188.2019.8949259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Providing news recommendations is an important trend for online news websites to attract more users and create more benefits. In this research, we propose a novel recommendation approach for recommending news articles. We propose A Collaborative Semantic Topic Model and an ensemble model to predict user preferences based on combining Matrix Factorization with articles' semantic latent topics derived from word embedding and Latent Dirichlet Allocation. The proposed ensemble model is further integrated with a recommendation adjustment mechanism to adjust users' online recommendation lists. We evaluate the proposed approach via offline experiments and online evaluation on a real news website. The experimental result demonstrates that our proposed approach can improve the recommendation quality of recommending news articles.
基于协同语义主题模型的新闻推荐及推荐调整
提供新闻推荐是在线新闻网站吸引更多用户、创造更多效益的重要趋势。在这项研究中,我们提出了一种新的推荐方法来推荐新闻文章。本文提出了一种基于矩阵分解的协同语义主题模型和一种集成模型来预测用户偏好,该模型结合词嵌入和潜在狄利克雷分配得到的文章语义潜在主题。该集成模型进一步集成了推荐调整机制,以调整用户的在线推荐列表。我们通过离线实验和在真实新闻网站上的在线评估来评估所提出的方法。实验结果表明,该方法可以提高新闻文章推荐的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信