Bayesian Model Selection for Independent Factor Analysis

Omolabake A. Adenle, W. Fitzgerald
{"title":"Bayesian Model Selection for Independent Factor Analysis","authors":"Omolabake A. Adenle, W. Fitzgerald","doi":"10.1109/ITW.2006.1633841","DOIUrl":null,"url":null,"abstract":"We present a stochastic algorithm for Independent Factor Analysis, incorporating a scheme for performing model selection over latent data. Independent Factor Analysis (IFA) is a method for learing locally non-linear subspaces in data. IFA uses a hierarchical generative model with factors modeled as independent Mixtures of Gaussians(MoGs), each mixture component representing a factor state. We incorporate Birth-Death MCMC (BDMCMC) to simulate samples from the posterior distribution of the factor model, with a Gibbs Sampler simulating from the posterior over model parameters. In spite of the common practice of using a fixed number of mixture components to model factors, it may be difficult to blindly determine an optimal minimal number of components without prior knowledge of the structure of the hidden data. Also, in pattern recognition applications where the source model order has an intrinsic interpretation, estimating this along with other model parameters would be useful. Our algorithm addresses both issues of model selection and parameter estimation.","PeriodicalId":293144,"journal":{"name":"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este","volume":"631 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2006.1633841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a stochastic algorithm for Independent Factor Analysis, incorporating a scheme for performing model selection over latent data. Independent Factor Analysis (IFA) is a method for learing locally non-linear subspaces in data. IFA uses a hierarchical generative model with factors modeled as independent Mixtures of Gaussians(MoGs), each mixture component representing a factor state. We incorporate Birth-Death MCMC (BDMCMC) to simulate samples from the posterior distribution of the factor model, with a Gibbs Sampler simulating from the posterior over model parameters. In spite of the common practice of using a fixed number of mixture components to model factors, it may be difficult to blindly determine an optimal minimal number of components without prior knowledge of the structure of the hidden data. Also, in pattern recognition applications where the source model order has an intrinsic interpretation, estimating this along with other model parameters would be useful. Our algorithm addresses both issues of model selection and parameter estimation.
独立因素分析中的贝叶斯模型选择
我们提出了一种独立因素分析的随机算法,结合了一种对潜在数据进行模型选择的方案。独立因子分析(IFA)是一种清除数据中局部非线性子空间的方法。IFA使用分层生成模型,将因子建模为独立的高斯混合(mog),每个混合成分代表一个因子状态。我们采用出生-死亡MCMC (BDMCMC)来模拟因子模型的后验分布样本,并使用Gibbs采样器模拟模型参数的后验分布。尽管通常的做法是使用固定数量的混合成分来建模因素,但在没有事先了解隐藏数据结构的情况下,盲目地确定最优最小数量的成分可能是困难的。此外,在源模型顺序具有内在解释的模式识别应用程序中,估计它与其他模型参数将是有用的。我们的算法解决了模型选择和参数估计两个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信