Maximum Likelihood localization of wireless networks using biased range measurements

A. Weiss, J. Picard
{"title":"Maximum Likelihood localization of wireless networks using biased range measurements","authors":"A. Weiss, J. Picard","doi":"10.1109/ISCIT.2007.4392137","DOIUrl":null,"url":null,"abstract":"Localization of ad-hoc wireless networks is useful for services, management and routing. Localization is frequently based on station-to-station range measurements and a few reference sensors. We address the localization problem in the case of incomplete set of noisy range measurements with unknown bias. A statistically efficient, maximum likelihood algorithm, inspired by the Gerchberg-Saxton procedure for phase retrieval, is presented. In addition, a compact explicit expression for the Fisher Information matrix is provided. A set of numerical examples demonstrates the bias effect on the localization accuracy. As expected, the localization accuracy improves when the unknown bias is estimated.","PeriodicalId":331439,"journal":{"name":"2007 International Symposium on Communications and Information Technologies","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Communications and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCIT.2007.4392137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Localization of ad-hoc wireless networks is useful for services, management and routing. Localization is frequently based on station-to-station range measurements and a few reference sensors. We address the localization problem in the case of incomplete set of noisy range measurements with unknown bias. A statistically efficient, maximum likelihood algorithm, inspired by the Gerchberg-Saxton procedure for phase retrieval, is presented. In addition, a compact explicit expression for the Fisher Information matrix is provided. A set of numerical examples demonstrates the bias effect on the localization accuracy. As expected, the localization accuracy improves when the unknown bias is estimated.
使用有偏距离测量的无线网络的最大似然定位
自组织无线网络的本地化对服务、管理和路由都很有用。定位通常基于站对站距离测量和一些参考传感器。我们解决了不完全噪声距离测量集和未知偏差情况下的定位问题。在相位检索的Gerchberg-Saxton过程的启发下,提出了一种统计上有效的最大似然算法。此外,还给出了Fisher信息矩阵的简洁显式表达式。一组数值算例说明了偏置对定位精度的影响。正如预期的那样,当估计未知偏差时,定位精度提高了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信