Texture analysis of seabed images: Quantifying the presence of Posidonia oceanica at Palma Bay

M. Massot-Campos, Gabriel Oliver-Codina, Laura Ruano-Amengual, Margaret Miró-Julià
{"title":"Texture analysis of seabed images: Quantifying the presence of Posidonia oceanica at Palma Bay","authors":"M. Massot-Campos, Gabriel Oliver-Codina, Laura Ruano-Amengual, Margaret Miró-Julià","doi":"10.1109/OCEANS-BERGEN.2013.6607991","DOIUrl":null,"url":null,"abstract":"An automatic classifier algorithm has been designed to assess the population of Posidonia oceanica over a set of underwater images at Palma Bay. Law's energy filters and statistical descriptors of the Gray Level Co-occurrence Matrix have been use to correctly classify the input image patches in two classes: Posidonia oceanica or not Posidonia oceanica. The input images have been first preprocessed and splitted in three different patch sizes in order to find the best patch size to better classify this seagrass. From all the attributes obtained in these patches, a best subset algorithm has been run to choose the best ones and a decision tree classifier has been trained. The classifier was made by training a Logistic Model Tree from 125 pre-classified images. This classifier was finally tested on 100 new images. The classifier outputs gray level images where black color indicates Posidonia oceanica presence and white no presence. Intermediate values are obtained by overlapping the processed patches, resulting in a smoother final result. This images can be merged in an offline process to obtain density maps of this algae in the sea.","PeriodicalId":224246,"journal":{"name":"2013 MTS/IEEE OCEANS - Bergen","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 MTS/IEEE OCEANS - Bergen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS-BERGEN.2013.6607991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

An automatic classifier algorithm has been designed to assess the population of Posidonia oceanica over a set of underwater images at Palma Bay. Law's energy filters and statistical descriptors of the Gray Level Co-occurrence Matrix have been use to correctly classify the input image patches in two classes: Posidonia oceanica or not Posidonia oceanica. The input images have been first preprocessed and splitted in three different patch sizes in order to find the best patch size to better classify this seagrass. From all the attributes obtained in these patches, a best subset algorithm has been run to choose the best ones and a decision tree classifier has been trained. The classifier was made by training a Logistic Model Tree from 125 pre-classified images. This classifier was finally tested on 100 new images. The classifier outputs gray level images where black color indicates Posidonia oceanica presence and white no presence. Intermediate values are obtained by overlapping the processed patches, resulting in a smoother final result. This images can be merged in an offline process to obtain density maps of this algae in the sea.
海底图像的纹理分析:量化帕尔马湾海洋波西多尼亚的存在
在帕尔马湾的一组水下图像中,设计了一种自动分类算法来评估海洋波西多尼亚的种群。利用Law的能量滤波器和灰度共生矩阵的统计描述符,将输入图像块正确地划分为Posidonia oceanica和非Posidonia oceanica两类。首先对输入的图像进行预处理,并将其分割成三个不同的patch大小,以便找到最佳的patch大小来更好地对海草进行分类。从这些补丁中获得的所有属性中,运行最佳子集算法来选择最佳属性,并训练决策树分类器。该分类器由125张预分类图像训练成Logistic模型树。这个分类器最终在100张新图像上进行了测试。分类器输出灰度级图像,其中黑色表示存在Posidonia oceanica,白色表示不存在。中间值是通过叠加处理后的补丁得到的,从而得到一个更平滑的最终结果。这些图像可以在离线过程中合并,以获得这种藻类在海洋中的密度图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信