Study of Security Investment Optimizing Combination Based on PSACO

Jinyu Tian, Jianhong Ma
{"title":"Study of Security Investment Optimizing Combination Based on PSACO","authors":"Jinyu Tian, Jianhong Ma","doi":"10.1109/ISIP.2008.119","DOIUrl":null,"url":null,"abstract":"Based on Markowitzpsila theory of asset portfolio, a multi-factor and optimal model for portfolio investment in the condition of considering friction factors in China security market is established. A hybrid methodology PSACO (particle swarm ant colony optimization) combining particle swarm optimization with ant colony optimization algorithm is applied to solve the model. Both particle swarm optimization (PSO) and ant colony optimization (ACO) are co-operative, population-based global search swarm intelligence meta-heuristics. PSO is inspired by social behavior of bird flocking or fish schooling, while ACO imitates foraging behavior of real life ants. In this study, we employ a pheromone-guided mechanism to improve the performance of PSO method. Additionally, the model is implemented on the demonstrated research of the index stock of index 30, the result could provide scientific foundation for security investment.","PeriodicalId":103284,"journal":{"name":"2008 International Symposiums on Information Processing","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposiums on Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIP.2008.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Based on Markowitzpsila theory of asset portfolio, a multi-factor and optimal model for portfolio investment in the condition of considering friction factors in China security market is established. A hybrid methodology PSACO (particle swarm ant colony optimization) combining particle swarm optimization with ant colony optimization algorithm is applied to solve the model. Both particle swarm optimization (PSO) and ant colony optimization (ACO) are co-operative, population-based global search swarm intelligence meta-heuristics. PSO is inspired by social behavior of bird flocking or fish schooling, while ACO imitates foraging behavior of real life ants. In this study, we employ a pheromone-guided mechanism to improve the performance of PSO method. Additionally, the model is implemented on the demonstrated research of the index stock of index 30, the result could provide scientific foundation for security investment.
基于PSACO的证券投资优化组合研究
基于马科维茨西拉资产组合理论,建立了考虑摩擦因素的中国证券市场组合投资多因素最优模型。采用粒子群算法和蚁群优化算法相结合的混合方法PSACO (particle swarm ant colony optimization)对模型进行求解。粒子群优化(PSO)和蚁群优化(ACO)都是基于群体的协同全局搜索群智能元启发式算法。PSO的灵感来自于鸟群或鱼群的社会行为,而蚁群算法则模仿了现实生活中蚂蚁的觅食行为。在本研究中,我们采用信息素引导机制来提高粒子群算法的性能。并将该模型应用于指数30指数股票的实证研究,结果可为证券投资提供科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信