Learning heuristic selection using a Time Delay Neural Network for Open Vehicle Routing

R. Tyasnurita, E. Özcan, R. John
{"title":"Learning heuristic selection using a Time Delay Neural Network for Open Vehicle Routing","authors":"R. Tyasnurita, E. Özcan, R. John","doi":"10.1109/CEC.2017.7969477","DOIUrl":null,"url":null,"abstract":"A selection hyper-heuristic is a search method that controls a prefixed set of low-level heuristics for solving a given computationally difficult problem. This study investigates a learning-via demonstrations approach generating a selection hyper-heuristic for Open Vehicle Routing Problem (OVRP). As a chosen ‘expert’ hyper-heuristic is run on a small set of training problem instances, data is collected to learn from the expert regarding how to decide which low-level heuristic to select and apply to the solution in hand during the search process. In this study, a Time Delay Neural Network (TDNN) is used to extract hidden patterns within the collected data in the form of a classifier, i.e an ‘apprentice’ hyper-heuristic, which is then used to solve the ‘unseen’ problem instances. Firstly, the parameters of TDNN are tuned using Taguchi orthogonal array as a design of experiments method. Then the influence of extending and enriching the information collected from the expert and fed into TDNN is explored on the behaviour of the generated apprentice hyper-heuristic. The empirical results show that the use of distance between solutions as an additional information collected from the expert generates an apprentice which outperforms the expert algorithm on a benchmark of OVRP instances.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

A selection hyper-heuristic is a search method that controls a prefixed set of low-level heuristics for solving a given computationally difficult problem. This study investigates a learning-via demonstrations approach generating a selection hyper-heuristic for Open Vehicle Routing Problem (OVRP). As a chosen ‘expert’ hyper-heuristic is run on a small set of training problem instances, data is collected to learn from the expert regarding how to decide which low-level heuristic to select and apply to the solution in hand during the search process. In this study, a Time Delay Neural Network (TDNN) is used to extract hidden patterns within the collected data in the form of a classifier, i.e an ‘apprentice’ hyper-heuristic, which is then used to solve the ‘unseen’ problem instances. Firstly, the parameters of TDNN are tuned using Taguchi orthogonal array as a design of experiments method. Then the influence of extending and enriching the information collected from the expert and fed into TDNN is explored on the behaviour of the generated apprentice hyper-heuristic. The empirical results show that the use of distance between solutions as an additional information collected from the expert generates an apprentice which outperforms the expert algorithm on a benchmark of OVRP instances.
基于时滞神经网络的开放式车辆路径学习启发式选择
选择超启发式是一种搜索方法,它控制一组预先设置的低级启发式来解决给定的计算难题。本文研究了一种通过示范学习的方法,为开放式车辆路线问题(OVRP)生成选择超启发式算法。当选定的“专家”超启发式算法在一小组训练问题实例上运行时,收集数据以从专家那里学习如何在搜索过程中决定选择哪个低级启发式算法并将其应用于手头的解决方案。在本研究中,使用时间延迟神经网络(TDNN)以分类器的形式提取收集数据中的隐藏模式,即“学徒”超启发式,然后用于解决“看不见的”问题实例。首先,采用田口正交阵列作为实验设计方法,对TDNN的参数进行了调谐。然后探讨了扩展和丰富从专家那里收集的信息并将其输入TDNN对生成的学徒超启发式行为的影响。实证结果表明,将解决方案之间的距离作为从专家那里收集的附加信息生成的学徒在OVRP实例的基准上优于专家算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信