{"title":"Preserving Women Public Restroom Privacy using Convolutional Neural Networks-Based Automatic Gender Detection","authors":"Desi Kristiyani, A. Wijayanto","doi":"10.34123/icdsos.v2021i1.29","DOIUrl":null,"url":null,"abstract":"Personal safety and privacy have been the significant concerns among women to use and access public restrooms/toilets, especially in developing countries such as Indonesia. Privacy-enhancing designs are unquestionably expected to ensure no men entering the rooms neither intentionally nor accidentally without prior notice. In this paper, we propose a facial recognition approach to ensure women's safety and privacy in public restroom areas using Convolutional Neural Networks (CNN) model as a gender classifier. Our main contributions are as follows: (1) a webcam feed automatic gender detection model using CNN which may further be connected to a security alarm (2) a publicly available gender-annotated image dataset that embraces Indonesian facial recognition samples. Supplementary Indonesian facial examples are taken from a government-affiliated college, Politeknik Statistika STIS students' photo datasets. The experimental results show a promising accuracy of our proposed model up to 95.84%. This study could be beneficial and useful for wider implementation in supporting the safety system of public universities, offices, and government buildings.","PeriodicalId":151043,"journal":{"name":"Proceedings of The International Conference on Data Science and Official Statistics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The International Conference on Data Science and Official Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34123/icdsos.v2021i1.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Personal safety and privacy have been the significant concerns among women to use and access public restrooms/toilets, especially in developing countries such as Indonesia. Privacy-enhancing designs are unquestionably expected to ensure no men entering the rooms neither intentionally nor accidentally without prior notice. In this paper, we propose a facial recognition approach to ensure women's safety and privacy in public restroom areas using Convolutional Neural Networks (CNN) model as a gender classifier. Our main contributions are as follows: (1) a webcam feed automatic gender detection model using CNN which may further be connected to a security alarm (2) a publicly available gender-annotated image dataset that embraces Indonesian facial recognition samples. Supplementary Indonesian facial examples are taken from a government-affiliated college, Politeknik Statistika STIS students' photo datasets. The experimental results show a promising accuracy of our proposed model up to 95.84%. This study could be beneficial and useful for wider implementation in supporting the safety system of public universities, offices, and government buildings.