Percolation processes and wireless network resilience

Z. Kong, E. Yeh
{"title":"Percolation processes and wireless network resilience","authors":"Z. Kong, E. Yeh","doi":"10.1109/ITA.2008.4601090","DOIUrl":null,"url":null,"abstract":"We study the problem of wireless network resilience to node failures from a percolation-based perspective. In practical wireless networks, it is often the case that nodes with larger degrees (i.e., more neighbors) are more likely to fail. We model this phenomenon as a degree-dependent site percolation process on random geometric graphs. In particular, we obtain analytical conditions for the existence of phase transitions within this model. Furthermore, in networks carrying traffic load, the failure of one node can result in redistribution of the load onto other nearby nodes. If these nodes fail due to excessive load, then this process can result in cascading failure. We analyze this cascading failures problem in large-scale wireless networks, and show that it is equivalent to a degree-dependent site percolation on random geometric graphs. We obtain analytical conditions for cascades in this model.","PeriodicalId":345196,"journal":{"name":"2008 Information Theory and Applications Workshop","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Information Theory and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2008.4601090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We study the problem of wireless network resilience to node failures from a percolation-based perspective. In practical wireless networks, it is often the case that nodes with larger degrees (i.e., more neighbors) are more likely to fail. We model this phenomenon as a degree-dependent site percolation process on random geometric graphs. In particular, we obtain analytical conditions for the existence of phase transitions within this model. Furthermore, in networks carrying traffic load, the failure of one node can result in redistribution of the load onto other nearby nodes. If these nodes fail due to excessive load, then this process can result in cascading failure. We analyze this cascading failures problem in large-scale wireless networks, and show that it is equivalent to a degree-dependent site percolation on random geometric graphs. We obtain analytical conditions for cascades in this model.
渗透过程和无线网络弹性
我们从基于渗透的角度研究无线网络对节点故障的弹性问题。在实际的无线网络中,通常情况下,具有较大程度的节点(即更多的邻居)更容易发生故障。我们将这种现象建模为随机几何图上的程度依赖的站点渗透过程。特别地,我们得到了该模型中相变存在的解析条件。此外,在承载流量负载的网络中,一个节点的故障可能导致负载重新分配到附近的其他节点上。如果这些节点由于负载过重而失败,则此过程可能导致级联故障。我们分析了大规模无线网络中的级联故障问题,并证明了它相当于随机几何图上的依赖程度的站点渗透。在此模型中得到了叶栅的解析条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信