Adaptive and resource-aware mining of frequent sets

S. Orlando, P. Palmerini, R. Perego, F. Silvestri
{"title":"Adaptive and resource-aware mining of frequent sets","authors":"S. Orlando, P. Palmerini, R. Perego, F. Silvestri","doi":"10.1109/ICDM.2002.1183921","DOIUrl":null,"url":null,"abstract":"The performance of an algorithm that mines frequent sets from transactional databases may severely depend on the specific features of the data being analyzed. Moreover, some architectural characteristics of the computational platform used - e.g. the available main memory - can dramatically change its runtime behavior. In this paper we present DCI (Direct Count & Intersect), an efficient algorithm for discovering frequent sets from large databases. Due to the multiple heuristics strategies adopted, DCI can adapt its behavior not only to the features of the specific computing platform, but also to the features of the dataset being mined, so that it results very effective in mining both short and long patterns from sparse and dense datasets. Finally we also discuss the parallelization strategies adopted in the design of ParDCI, a distributed and multi-threaded implementation of DCI.","PeriodicalId":405340,"journal":{"name":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","volume":"533 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"127","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2002.1183921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 127

Abstract

The performance of an algorithm that mines frequent sets from transactional databases may severely depend on the specific features of the data being analyzed. Moreover, some architectural characteristics of the computational platform used - e.g. the available main memory - can dramatically change its runtime behavior. In this paper we present DCI (Direct Count & Intersect), an efficient algorithm for discovering frequent sets from large databases. Due to the multiple heuristics strategies adopted, DCI can adapt its behavior not only to the features of the specific computing platform, but also to the features of the dataset being mined, so that it results very effective in mining both short and long patterns from sparse and dense datasets. Finally we also discuss the parallelization strategies adopted in the design of ParDCI, a distributed and multi-threaded implementation of DCI.
频繁集的自适应和资源感知挖掘
从事务性数据库中挖掘频繁集的算法的性能可能严重依赖于所分析数据的特定特征。此外,所使用的计算平台的一些体系结构特征——例如可用的主存——可以极大地改变其运行时行为。本文提出了一种从大型数据库中发现频繁集的有效算法DCI (Direct Count & Intersect)。由于采用了多种启发式策略,DCI不仅可以根据特定计算平台的特征调整其行为,还可以根据所挖掘的数据集的特征调整其行为,因此它可以非常有效地从稀疏和密集数据集中挖掘短模式和长模式。最后,我们还讨论了并行化策略在设计ParDCI时所采用的策略,ParDCI是一种分布式、多线程的DCI实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信