Musical applications using perfect-translation-invariant variable-density complex discrete wavelet transform

H. Toda, Zhong Zhang, T. Imamura
{"title":"Musical applications using perfect-translation-invariant variable-density complex discrete wavelet transform","authors":"H. Toda, Zhong Zhang, T. Imamura","doi":"10.1109/ICWAPR.2013.6599325","DOIUrl":null,"url":null,"abstract":"In this paper, firstly, we introduce our proposed complex discrete wavelet transform achieving variable wavelet density in the frequency and time domains with perfect translation invariance. Next, using it, we introduce three musical applications “High-precision frequency detection”, “Time stretch” and “Pitch shift”. The time stretch is the process of changing the speed of an audio signal without affecting its pitch, and the pitch shift is the process of changing the pitch without affecting the speed.","PeriodicalId":236156,"journal":{"name":"2013 International Conference on Wavelet Analysis and Pattern Recognition","volume":"369 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2013.6599325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, firstly, we introduce our proposed complex discrete wavelet transform achieving variable wavelet density in the frequency and time domains with perfect translation invariance. Next, using it, we introduce three musical applications “High-precision frequency detection”, “Time stretch” and “Pitch shift”. The time stretch is the process of changing the speed of an audio signal without affecting its pitch, and the pitch shift is the process of changing the pitch without affecting the speed.
音乐应用中使用完美平移不变变密度复离散小波变换
本文首先介绍了我们所提出的复离散小波变换,实现了在频域和时域具有完全平移不变性的可变小波密度。接下来,我们用它介绍了三个音乐应用“高精度频率检测”,“时间拉伸”和“音高移位”。时间拉伸是改变音频信号的速度而不影响其音高的过程,而音高位移是改变音高而不影响速度的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信