Are words enough?: a study on text-based representations and retrieval models for linking pins to online shops

Susana Zoghbi, Ivan Vulic, Marie-Francine Moens
{"title":"Are words enough?: a study on text-based representations and retrieval models for linking pins to online shops","authors":"Susana Zoghbi, Ivan Vulic, Marie-Francine Moens","doi":"10.1145/2513549.2513557","DOIUrl":null,"url":null,"abstract":"User-generated content offers opportunities to learn about people's interests and hobbies. We can leverage this information to help users find interesting shops and businesses find interested users. However this content is highly noisy and unstructured as posted on social media sites and blogs. In this work we evaluate different textual representations and retrieval models that aim to make sense of social media data for retail applications. Our task is to link the text of pins (from Pinterest.com) to online shops (formed by clustering Amazon.com's products). Our results show that document representations that combine latent concepts with single words yield the best performance.","PeriodicalId":126426,"journal":{"name":"Proceedings of the 2013 international workshop on Mining unstructured big data using natural language processing","volume":"366 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2013 international workshop on Mining unstructured big data using natural language processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2513549.2513557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

User-generated content offers opportunities to learn about people's interests and hobbies. We can leverage this information to help users find interesting shops and businesses find interested users. However this content is highly noisy and unstructured as posted on social media sites and blogs. In this work we evaluate different textual representations and retrieval models that aim to make sense of social media data for retail applications. Our task is to link the text of pins (from Pinterest.com) to online shops (formed by clustering Amazon.com's products). Our results show that document representations that combine latent concepts with single words yield the best performance.
光说就够了吗?:图钉与网店链接的文本表示与检索模型研究
用户生成的内容提供了了解人们兴趣和爱好的机会。我们可以利用这些信息帮助用户找到感兴趣的商店,帮助企业找到感兴趣的用户。然而,这些内容在社交媒体网站和博客上发布时非常嘈杂和无结构。在这项工作中,我们评估了不同的文本表示和检索模型,旨在为零售应用程序理解社交媒体数据。我们的任务是将pin的文本(来自Pinterest.com)链接到在线商店(由亚马逊的产品聚集而成)。我们的结果表明,将潜在概念与单个单词结合起来的文档表示产生了最好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信