Reconstruction-based supervised hashing

Xin Yuan, Z. Chen, Jiwen Lu, Jianjiang Feng, Jie Zhou
{"title":"Reconstruction-based supervised hashing","authors":"Xin Yuan, Z. Chen, Jiwen Lu, Jianjiang Feng, Jie Zhou","doi":"10.1109/ICME.2017.8019353","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a reconstruction-based supervised hashing (RSH) method to learn compact binary codes with holistic structure preservation for large scale image search. Unlike most existing hashing methods which consider pair-wise similarity, our method exploits the structural information of samples by employing a reconstruction-based criterion. Moreover, the label information of samples is also utilized to enhance the discriminative power of the teamed hash codes. Specifically, our method minimizes the distance between each point and the selected generated-structure with the same class label and maximizes the distance between each point and the selected generated-structure with different class labels. Experimental results on two widely used image datasets demonstrate the effectiveness of the proposed method.","PeriodicalId":330977,"journal":{"name":"2017 IEEE International Conference on Multimedia and Expo (ICME)","volume":"239 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2017.8019353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we propose a reconstruction-based supervised hashing (RSH) method to learn compact binary codes with holistic structure preservation for large scale image search. Unlike most existing hashing methods which consider pair-wise similarity, our method exploits the structural information of samples by employing a reconstruction-based criterion. Moreover, the label information of samples is also utilized to enhance the discriminative power of the teamed hash codes. Specifically, our method minimizes the distance between each point and the selected generated-structure with the same class label and maximizes the distance between each point and the selected generated-structure with different class labels. Experimental results on two widely used image datasets demonstrate the effectiveness of the proposed method.
基于重构的监督哈希
本文提出了一种基于重构的有监督哈希(RSH)方法来学习具有整体结构保留的紧凑二进制码,用于大规模图像搜索。与大多数考虑成对相似性的现有哈希方法不同,我们的方法通过采用基于重建的标准来利用样本的结构信息。此外,还利用样本的标签信息来增强分组哈希码的判别能力。具体来说,我们的方法将每个点与具有相同类标签的选定生成结构之间的距离最小化,并将每个点与具有不同类标签的选定生成结构之间的距离最大化。在两个广泛使用的图像数据集上的实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信