Kernel-based Template Alignment

I. Guskov
{"title":"Kernel-based Template Alignment","authors":"I. Guskov","doi":"10.1109/CVPR.2006.162","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel kernel-based method for template tracking in video sequences. The method is derived for a general warping transformation, and its application to affine motion tracking is further explored. Our approach is based on maximization of the multi-kernel Bhattacharyya coefficient with respect to the warp parameters. We explicitly compute the gradient of the similarity functional, and use a quasi-Newton procedure for optimization. Additionally, we consider a simple extension of the method that employs an illumination model correction to allow tracking under varying lighting conditions. The resulting tracking procedure is evaluated on a number of examples including large templates tracking non-rigidly moving textured areas.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

This paper introduces a novel kernel-based method for template tracking in video sequences. The method is derived for a general warping transformation, and its application to affine motion tracking is further explored. Our approach is based on maximization of the multi-kernel Bhattacharyya coefficient with respect to the warp parameters. We explicitly compute the gradient of the similarity functional, and use a quasi-Newton procedure for optimization. Additionally, we consider a simple extension of the method that employs an illumination model correction to allow tracking under varying lighting conditions. The resulting tracking procedure is evaluated on a number of examples including large templates tracking non-rigidly moving textured areas.
基于内核的模板对齐
介绍了一种新的基于核的视频序列模板跟踪方法。针对一般的翘曲变换导出了该方法,并进一步探讨了该方法在仿射运动跟踪中的应用。我们的方法是基于最大化的多核Bhattacharyya系数相对于翘曲参数。我们显式计算相似泛函的梯度,并使用拟牛顿过程进行优化。此外,我们考虑了该方法的一个简单扩展,即采用照明模型校正来允许在不同的照明条件下进行跟踪。所得到的跟踪程序在许多例子上进行了评估,包括跟踪非刚性移动纹理区域的大型模板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信