Study of epileptic rat's EEG using bispectrum analysis

Wu Hongyi, Xia Yang, Lai Yongxiu, L. Yansu, Y. Dezhong
{"title":"Study of epileptic rat's EEG using bispectrum analysis","authors":"Wu Hongyi, Xia Yang, Lai Yongxiu, L. Yansu, Y. Dezhong","doi":"10.1109/ICNIC.2005.1499857","DOIUrl":null,"url":null,"abstract":"In order to obtain a sensitive parameter to discriminate the different stages of epilepsy, we studied pilocarpine-induced epileptic rat's ECoG and EHG by bispectrum analysis method based on the assumption that EEG is nonGaussian and nonlinear signal. In this paper, we proposed a model of EEG signals according to the parameter model stimulated by nonGaussian white noise to estimate the bispectrum of EEG. The results showed that the bispectrum analysis is sensitive to the epileptic and nonepileptic EEG. From these results, the quantified parameters presenting the features of epileptic EEG can be found, which could be new evidences to clinical monitoring and predicting of seizure.","PeriodicalId":169717,"journal":{"name":"Proceedings. 2005 First International Conference on Neural Interface and Control, 2005.","volume":"323 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 First International Conference on Neural Interface and Control, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIC.2005.1499857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In order to obtain a sensitive parameter to discriminate the different stages of epilepsy, we studied pilocarpine-induced epileptic rat's ECoG and EHG by bispectrum analysis method based on the assumption that EEG is nonGaussian and nonlinear signal. In this paper, we proposed a model of EEG signals according to the parameter model stimulated by nonGaussian white noise to estimate the bispectrum of EEG. The results showed that the bispectrum analysis is sensitive to the epileptic and nonepileptic EEG. From these results, the quantified parameters presenting the features of epileptic EEG can be found, which could be new evidences to clinical monitoring and predicting of seizure.
应用双谱分析研究癫痫大鼠脑电图
在假定脑电图是非高斯非线性信号的基础上,采用双谱分析方法对匹罗卡品诱发的癫痫大鼠脑电图和脑电图进行了研究,以期获得一个判别癫痫不同阶段的敏感参数。本文提出了一种基于非高斯白噪声刺激参数模型的脑电信号模型,用于估计脑电信号的双谱。结果表明,双谱分析对癫痫性和非癫痫性脑电图具有较好的敏感性。从这些结果中可以找到表征癫痫性脑电图特征的量化参数,为临床监测和预测癫痫发作提供新的依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信