H. Rabiee, J. Haddadnia, Hossein Mousavi, M. Kalantarzadeh, Moin Nabi, Vittorio Murino
{"title":"Novel dataset for fine-grained abnormal behavior understanding in crowd","authors":"H. Rabiee, J. Haddadnia, Hossein Mousavi, M. Kalantarzadeh, Moin Nabi, Vittorio Murino","doi":"10.1109/AVSS.2016.7738074","DOIUrl":null,"url":null,"abstract":"Despite the huge research on crowd on behavior understanding in visual surveillance community, lack of publicly available realistic datasets for evaluating crowd behavioral interaction led not to have a fair common test bed for researchers to compare the strength of their methods in the real scenarios. This work presents a novel crowd dataset contains around 45,000 video clips which annotated by one of the five different fine-grained abnormal behavior categories. We also evaluated two state-of-the-art methods on our dataset, showing that our dataset can be effectively used as a benchmark for fine-grained abnormality detection. The details of the dataset and the results of the baseline methods are presented in the paper.","PeriodicalId":438290,"journal":{"name":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2016.7738074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50
Abstract
Despite the huge research on crowd on behavior understanding in visual surveillance community, lack of publicly available realistic datasets for evaluating crowd behavioral interaction led not to have a fair common test bed for researchers to compare the strength of their methods in the real scenarios. This work presents a novel crowd dataset contains around 45,000 video clips which annotated by one of the five different fine-grained abnormal behavior categories. We also evaluated two state-of-the-art methods on our dataset, showing that our dataset can be effectively used as a benchmark for fine-grained abnormality detection. The details of the dataset and the results of the baseline methods are presented in the paper.