Learning algorithms for a specific configuration of the quantron

S. Montigny, Richard Labib
{"title":"Learning algorithms for a specific configuration of the quantron","authors":"S. Montigny, Richard Labib","doi":"10.1109/IJCNN.2011.6033271","DOIUrl":null,"url":null,"abstract":"The quantron is a new artificial neuron model, able to solve nonlinear classification problems, for which an efficient learning algorithm has yet to be developed. Using surrogate potentials, constraints on some parameters and an infinite number of potentials, we obtain analytical expressions involving ceiling functions for the activation function of the quantron. We then show how to retrieve the parameters of a neuron from the images it produced.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The quantron is a new artificial neuron model, able to solve nonlinear classification problems, for which an efficient learning algorithm has yet to be developed. Using surrogate potentials, constraints on some parameters and an infinite number of potentials, we obtain analytical expressions involving ceiling functions for the activation function of the quantron. We then show how to retrieve the parameters of a neuron from the images it produced.
学习算法的特定配置的量子
量子量子是一种新型的人工神经元模型,能够解决非线性分类问题,目前还没有一种有效的学习算法。利用替代势、对某些参数的约束和无限个势,我们得到了涉及上限函数的量子子激活函数的解析表达式。然后我们展示如何从神经元产生的图像中检索神经元的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信