On closed-loop liveness of discrete event systems under maximally permissive control

L. Holloway, B. Krogh
{"title":"On closed-loop liveness of discrete event systems under maximally permissive control","authors":"L. Holloway, B. Krogh","doi":"10.1109/CDC.1989.70674","DOIUrl":null,"url":null,"abstract":"A class of controlled discrete-event systems that can be modeled as cyclic controlled marked graphs (CMGs), a special case of control Petri nets, is considered. Liveness of the controlled system under the maximally permissive feedback control is examined. In the CMG context, closed-loop liveness implies that from any reachable marking (state), any transition can be enabled to fire. The concept of synchronic distances in Petri nets is used to prove sufficient conditions under which the maximally permissive control results in a live closed-loop system.<<ETX>>","PeriodicalId":156565,"journal":{"name":"Proceedings of the 28th IEEE Conference on Decision and Control,","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th IEEE Conference on Decision and Control,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1989.70674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

A class of controlled discrete-event systems that can be modeled as cyclic controlled marked graphs (CMGs), a special case of control Petri nets, is considered. Liveness of the controlled system under the maximally permissive feedback control is examined. In the CMG context, closed-loop liveness implies that from any reachable marking (state), any transition can be enabled to fire. The concept of synchronic distances in Petri nets is used to prove sufficient conditions under which the maximally permissive control results in a live closed-loop system.<>
最大允许控制下离散事件系统的闭环活动性
研究了一类可建模为循环控制标记图的受控离散事件系统,这是控制Petri网的一种特殊情况。研究了最大允许反馈控制下被控系统的活动性。在CMG上下文中,闭环活跃性意味着可以从任何可到达的标记(状态)启动任何转换。利用Petri网中同步距离的概念,证明了最大允许控制产生活闭环系统的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信