Neural Networks for Predicting the Output of wind flow Simulations Over Complex Topographies

Michael Mayo, S. Wakes, C. Anderson
{"title":"Neural Networks for Predicting the Output of wind flow Simulations Over Complex Topographies","authors":"Michael Mayo, S. Wakes, C. Anderson","doi":"10.1109/ICBK.2018.00032","DOIUrl":null,"url":null,"abstract":"We use deep learning techniques to model computational fluid dynamics (CFD) simulations of wind flow over a complex topography. Our motivation is to \"speed up\" the optimisation of CFD-based simulations (such as the 3D wind farm layout optimisation problem) by developing surrogate models capable of predicting the output of a simulation at any given point in 3D space, given output from a set of training simulations that have already been run. Our promising results using TensorFlow show that deep neural networks can be learned to model CFD outputs with an error of as low as 2.5 meters per second.","PeriodicalId":144958,"journal":{"name":"2018 IEEE International Conference on Big Knowledge (ICBK)","volume":"66 2-3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2018.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We use deep learning techniques to model computational fluid dynamics (CFD) simulations of wind flow over a complex topography. Our motivation is to "speed up" the optimisation of CFD-based simulations (such as the 3D wind farm layout optimisation problem) by developing surrogate models capable of predicting the output of a simulation at any given point in 3D space, given output from a set of training simulations that have already been run. Our promising results using TensorFlow show that deep neural networks can be learned to model CFD outputs with an error of as low as 2.5 meters per second.
在复杂地形上预测风流模拟输出的神经网络
我们使用深度学习技术来模拟复杂地形上的风的计算流体动力学(CFD)模拟。我们的动机是通过开发代理模型来“加速”基于cfd的模拟的优化(例如3D风电场布局优化问题),该模型能够预测3D空间中任何给定点的模拟输出,给定一组已经运行的训练模拟的输出。我们使用TensorFlow的结果表明,深度神经网络可以学习建模CFD输出,误差低至每秒2.5米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信