An Effective Ensemble Deep Learning Framework for Malware Detection

D. V. Sang, Dang Manh Cuong, Le Tran Bao Cuong
{"title":"An Effective Ensemble Deep Learning Framework for Malware Detection","authors":"D. V. Sang, Dang Manh Cuong, Le Tran Bao Cuong","doi":"10.1145/3287921.3287971","DOIUrl":null,"url":null,"abstract":"Malware (or malicious software) is any program or file that brings harm to a computer system. Malware includes computer viruses, worms, trojan horses, rootkit, adware, ransomware and spyware. Due to the explosive growth in number and variety of malware, the demand of improving automatic malware detection has increased. Machine learning approaches are a natural choice to deal with this problem since they can automatically discover hidden patterns in large-scale datasets to distinguish malware from benign. In this paper, we propose different deep neural network architectures from simple to advanced ones. We then fuse hand-crafted and deep features, and combine all models together to make an overall effective ensemble framework for malware detection. The experiment results demonstrate the efficiency of our proposed method, which is capable to detect malware with accuracy of 96.24% on our large real-life dataset.","PeriodicalId":448008,"journal":{"name":"Proceedings of the 9th International Symposium on Information and Communication Technology","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Symposium on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3287921.3287971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Malware (or malicious software) is any program or file that brings harm to a computer system. Malware includes computer viruses, worms, trojan horses, rootkit, adware, ransomware and spyware. Due to the explosive growth in number and variety of malware, the demand of improving automatic malware detection has increased. Machine learning approaches are a natural choice to deal with this problem since they can automatically discover hidden patterns in large-scale datasets to distinguish malware from benign. In this paper, we propose different deep neural network architectures from simple to advanced ones. We then fuse hand-crafted and deep features, and combine all models together to make an overall effective ensemble framework for malware detection. The experiment results demonstrate the efficiency of our proposed method, which is capable to detect malware with accuracy of 96.24% on our large real-life dataset.
一种有效的恶意软件检测集成深度学习框架
恶意软件(或恶意软件)是对计算机系统造成危害的任何程序或文件。恶意软件包括计算机病毒、蠕虫、特洛伊木马、rootkit、广告软件、勒索软件和间谍软件。由于恶意软件数量和种类的爆炸式增长,对改进恶意软件自动检测的需求也随之增加。机器学习方法是处理这个问题的自然选择,因为它们可以自动发现大规模数据集中隐藏的模式,以区分恶意软件和良性软件。在本文中,我们提出了从简单到高级的不同深度神经网络架构。然后,我们融合手工制作和深度特征,并将所有模型组合在一起,使恶意软件检测的整体有效集成框架。实验结果证明了该方法的有效性,在大型真实数据集上检测恶意软件的准确率达到96.24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信