Evolutionary Neural Architecture Search for Traffic Forecasting

Daniel Klosa, C. Büskens
{"title":"Evolutionary Neural Architecture Search for Traffic Forecasting","authors":"Daniel Klosa, C. Büskens","doi":"10.1109/ICMLA55696.2022.00198","DOIUrl":null,"url":null,"abstract":"Traffic forecasting is a challenging task due to complex spatial and temporal dependencies across sensor locations and time. Interest in solving this task has increased, but current research focuses on manually constructing neural network architectures without the aid of neural architecture search (NAS). In our work, we explore evolutionary neural architecture search (ENAS) by deploying a genetic algorithm (GA) to find optimal neural network architectures for predicting traffic conditions. The search space for the GA consists of arbitrary combinations of dilated convolutions and graph convolutions for modelling temporal and spatial dependencies respectively, limited in complexity only by technical constraints. Experimental results show that model architectures obtained via GA are able to match the current state-of-the-art on traffic prediction benchmarks.","PeriodicalId":128160,"journal":{"name":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA55696.2022.00198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic forecasting is a challenging task due to complex spatial and temporal dependencies across sensor locations and time. Interest in solving this task has increased, but current research focuses on manually constructing neural network architectures without the aid of neural architecture search (NAS). In our work, we explore evolutionary neural architecture search (ENAS) by deploying a genetic algorithm (GA) to find optimal neural network architectures for predicting traffic conditions. The search space for the GA consists of arbitrary combinations of dilated convolutions and graph convolutions for modelling temporal and spatial dependencies respectively, limited in complexity only by technical constraints. Experimental results show that model architectures obtained via GA are able to match the current state-of-the-art on traffic prediction benchmarks.
交通预测的进化神经结构搜索
由于传感器位置和时间之间复杂的时空依赖性,交通预测是一项具有挑战性的任务。人们对解决这个问题的兴趣越来越大,但目前的研究主要集中在没有神经结构搜索(NAS)的帮助下手动构建神经网络架构。在我们的工作中,我们通过部署遗传算法(GA)来探索进化神经架构搜索(ENAS),以找到用于预测交通状况的最佳神经网络架构。遗传算法的搜索空间由扩展卷积和图卷积的任意组合组成,分别用于建模时间和空间依赖关系,其复杂性仅受技术限制。实验结果表明,通过遗传算法得到的模型结构能够在交通预测基准上与当前最先进的模型结构相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信