Tsutomu Nishigaki, H. Nishikawa, M. Kusunoki, S. Hontsu
{"title":"Measurement of Piezoelectric Properties of Pulsed Laser Deposited Hydroxyapatite Thin Films on Platinum or Titanium Substrate","authors":"Tsutomu Nishigaki, H. Nishikawa, M. Kusunoki, S. Hontsu","doi":"10.4172/2090-5025.S1-008","DOIUrl":null,"url":null,"abstract":"In order to measure the piezoelectric properties of the Hydroxyapatite (HAp) films, we have fabricated Cu/HAp/Ti or Cu/HAp/Pt structure. At first, a 1.5 m thick HAp was deposited on a Ti or Pt substrate using the KrF Pulsed Laser Deposition (PLD) method. After the HAp deposition, the HAp film was crystallized by post-annealing in nitrogen gas atmosphere and cooled slowly in an electric furnace. Then, a Cu top electrode sheet was attached on HAp film. Finally, one end of the Cu/HAp/Ti or Cu/HAp/Pt structure was clamped to compose a vibrating cantilever beam. Piezoelectric coefficients were estimated by output voltage responses of HAp films measured by a operational amplifier circuit when the Cu/HAp/Ti or Cu/HAp/Pt beam was excited by a mini-shaker at the first natural frequency of the beam. The results showed the piezoelectricity of the artificially synthesized HAp films.","PeriodicalId":127691,"journal":{"name":"Bioceramics Development and Applications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioceramics Development and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2090-5025.S1-008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In order to measure the piezoelectric properties of the Hydroxyapatite (HAp) films, we have fabricated Cu/HAp/Ti or Cu/HAp/Pt structure. At first, a 1.5 m thick HAp was deposited on a Ti or Pt substrate using the KrF Pulsed Laser Deposition (PLD) method. After the HAp deposition, the HAp film was crystallized by post-annealing in nitrogen gas atmosphere and cooled slowly in an electric furnace. Then, a Cu top electrode sheet was attached on HAp film. Finally, one end of the Cu/HAp/Ti or Cu/HAp/Pt structure was clamped to compose a vibrating cantilever beam. Piezoelectric coefficients were estimated by output voltage responses of HAp films measured by a operational amplifier circuit when the Cu/HAp/Ti or Cu/HAp/Pt beam was excited by a mini-shaker at the first natural frequency of the beam. The results showed the piezoelectricity of the artificially synthesized HAp films.