A Unified Framework for Multimodal Domain Adaptation

Fan Qi, Xiaoshan Yang, Changsheng Xu
{"title":"A Unified Framework for Multimodal Domain Adaptation","authors":"Fan Qi, Xiaoshan Yang, Changsheng Xu","doi":"10.1145/3240508.3240633","DOIUrl":null,"url":null,"abstract":"Domain adaptation aims to train a model on labeled data from a source domain while minimizing test error on a target domain. Most of existing domain adaptation methods only focus on reducing domain shift of single-modal data. In this paper, we consider a new problem of multimodal domain adaptation and propose a unified framework to solve it. The proposed multimodal domain adaptation neural networks(MDANN) consist of three important modules. (1) A covariant multimodal attention is designed to learn a common feature representation for multiple modalities. (2) A fusion module adaptively fuses attended features of different modalities. (3) Hybrid domain constraints are proposed to comprehensively learn domain-invariant features by constraining single modal features, fused features, and attention scores. Through jointly attending and fusing under an adversarial objective, the most discriminative and domain-adaptive parts of the features are adaptively fused together. Extensive experimental results on two real-world cross-domain applications (emotion recognition and cross-media retrieval) demonstrate the effectiveness of the proposed method.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Domain adaptation aims to train a model on labeled data from a source domain while minimizing test error on a target domain. Most of existing domain adaptation methods only focus on reducing domain shift of single-modal data. In this paper, we consider a new problem of multimodal domain adaptation and propose a unified framework to solve it. The proposed multimodal domain adaptation neural networks(MDANN) consist of three important modules. (1) A covariant multimodal attention is designed to learn a common feature representation for multiple modalities. (2) A fusion module adaptively fuses attended features of different modalities. (3) Hybrid domain constraints are proposed to comprehensively learn domain-invariant features by constraining single modal features, fused features, and attention scores. Through jointly attending and fusing under an adversarial objective, the most discriminative and domain-adaptive parts of the features are adaptively fused together. Extensive experimental results on two real-world cross-domain applications (emotion recognition and cross-media retrieval) demonstrate the effectiveness of the proposed method.
多模态域自适应的统一框架
领域自适应的目的是在源领域的标记数据上训练模型,同时最小化目标领域的测试误差。现有的域自适应方法大多只关注减少单模态数据的域移。本文考虑了一个新的多模态域自适应问题,并提出了一个统一的框架来解决该问题。提出的多模态域自适应神经网络(MDANN)由三个重要模块组成。(1)设计了协变多模态注意来学习多模态的共同特征表示。(2)融合模块自适应融合不同模态的出席特征。(3)提出混合域约束,通过约束单模态特征、融合特征和注意分数,综合学习域不变特征。通过对抗性目标下的共同参与和融合,将特征中最具判别性和最具领域适应性的部分自适应地融合在一起。在两个现实世界的跨领域应用(情感识别和跨媒体检索)上的大量实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信