Extracting Semantic Role Information from Unstructured Texts

Diana Trandabat, A. Trandabăț
{"title":"Extracting Semantic Role Information from Unstructured Texts","authors":"Diana Trandabat, A. Trandabăț","doi":"10.1109/SMAP.2011.20","DOIUrl":null,"url":null,"abstract":"Shallow semantic parsing of natural language processing is an important component in all kind of NLP applications and Semantic Role Labeling in particular, is an active research topic. This paper describes a rule-based Semantic Role Labeling system aimed at extracting semantic information from texts. The input text is processed by exploiting part of speech information and syntactic dependencies in order to identify semantic roles. The system's architecture is presented and the results and further developments are discussed.","PeriodicalId":346975,"journal":{"name":"2011 Sixth International Workshop on Semantic Media Adaptation and Personalization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Workshop on Semantic Media Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMAP.2011.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Shallow semantic parsing of natural language processing is an important component in all kind of NLP applications and Semantic Role Labeling in particular, is an active research topic. This paper describes a rule-based Semantic Role Labeling system aimed at extracting semantic information from texts. The input text is processed by exploiting part of speech information and syntactic dependencies in order to identify semantic roles. The system's architecture is presented and the results and further developments are discussed.
从非结构化文本中提取语义角色信息
自然语言处理的浅层语义解析是各种自然语言处理应用的重要组成部分,而语义角色标注更是一个活跃的研究课题。本文描述了一种基于规则的语义角色标注系统,旨在从文本中提取语义信息。通过利用部分语音信息和句法依赖关系对输入文本进行处理,从而确定语义角色。介绍了该系统的体系结构,并讨论了结果和进一步的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信