A Numerical Solution Model for the Heat Transfer in Octagonal Billets

Panagiotis Sismanis
{"title":"A Numerical Solution Model for the Heat Transfer in Octagonal Billets","authors":"Panagiotis Sismanis","doi":"10.5772/INTECHOPEN.84305","DOIUrl":null,"url":null,"abstract":"In the quest for high-quality steel products, the need of cast billets with minimum surface and internal defects is of paramount importance. On the other hand, productivity is required to be as high as possible in order to reduce production cost. Different billet shapes have been applied with emphasis upon square, rectangular, and circular cross-sections. It is obvious that the best billet shape that minimizes surface and subsurface defects is the circular one. Nevertheless, this shape creates some problems with respect to handling and safety reasons. One recent attempt is to produce normal octagonal-shaped billets that appear to approach the circular shape albeit easier to handle. In this study, a numerical solution for the heat transfer during solidification in the continuous casting of octagonal billets has been carried out. The developed model deploys an implicit scheme in order to solve the differential equations of heat transfer under the appropriate boundary conditions in a section of an octagonal billet, assuming fully axisymmetric cooling of the bloom. The geometry of the octagonal billet plays an interesting role in the development of the heat transfer analysis. Based upon fundamental principles, a computer program has been developed for this purpose. Consequently, results from the numerical solution are presented and discussed.","PeriodicalId":321588,"journal":{"name":"Heat and Mass Transfer - Advances in Science and Technology Applications","volume":"54 19","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat and Mass Transfer - Advances in Science and Technology Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.84305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the quest for high-quality steel products, the need of cast billets with minimum surface and internal defects is of paramount importance. On the other hand, productivity is required to be as high as possible in order to reduce production cost. Different billet shapes have been applied with emphasis upon square, rectangular, and circular cross-sections. It is obvious that the best billet shape that minimizes surface and subsurface defects is the circular one. Nevertheless, this shape creates some problems with respect to handling and safety reasons. One recent attempt is to produce normal octagonal-shaped billets that appear to approach the circular shape albeit easier to handle. In this study, a numerical solution for the heat transfer during solidification in the continuous casting of octagonal billets has been carried out. The developed model deploys an implicit scheme in order to solve the differential equations of heat transfer under the appropriate boundary conditions in a section of an octagonal billet, assuming fully axisymmetric cooling of the bloom. The geometry of the octagonal billet plays an interesting role in the development of the heat transfer analysis. Based upon fundamental principles, a computer program has been developed for this purpose. Consequently, results from the numerical solution are presented and discussed.
八角形钢坯传热的数值求解模型
在追求高质量钢产品的过程中,需要具有最小表面和内部缺陷的铸坯是至关重要的。另一方面,为了降低生产成本,要求生产率尽可能高。不同的钢坯形状已被应用,重点是方形、矩形和圆形截面。很明显,使表面和表面下缺陷最小化的最佳钢坯形状是圆形的。然而,这种形状在操作和安全方面产生了一些问题。最近的一项尝试是生产正常的八角形坯,看起来接近圆形,但更容易处理。本文对八角形连铸坯凝固过程中的传热问题进行了数值求解。该模型采用隐式格式来求解八角形坯段在适当边界条件下的传热微分方程,并假设坯体完全轴对称冷却。八角形钢坯的几何形状在传热分析的发展中起着有趣的作用。基于基本原理,为此目的开发了一个计算机程序。因此,给出了数值解的结果并进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信