S. Mahmoudi, M. Adoui, Mohammed Amin Belarbi, M. A. Larhmam, Fabian Lecron
{"title":"Cloud-based platform for computer vision applications","authors":"S. Mahmoudi, M. Adoui, Mohammed Amin Belarbi, M. A. Larhmam, Fabian Lecron","doi":"10.1145/3128128.3128158","DOIUrl":null,"url":null,"abstract":"During last years, images and videos have become widely used in many daily applications. Indeed, they can come from cameras, smartphones, social networks of from medical devices. Generally, these images and videos are used for illustrating people or objects (cars, trains, planes, etc.) in many situations such as airports, train stations, public areas, sport events, hospitals, etc. Thus, image and video processing algorithms have got increasing importance, they are required from various computer visions applications such as motion tracking, real time event detection, database (images and videos) indexation and medical computer aided diagnosis methods. In this paper, we propose a cloud platform that integrates the above-mentioned methods, which are generally developed with popular open source image and video processing libraries (OpenCV1, OpenGL2, ITK3, VTK4, etc.). Theses modules are automatically integrated and configured in the cloud application. Thus, the platform users will have access to different computer vision techniques without the need to download, install and configure the corresponding software. Each guest can select the required application, load its data and get the output results in a safe and simple way. The cloud platform can handle the variety of Operating Systems and programming languages (C++, Java, Python, etc.). Experimentations were conducted within two kinds of applications. The first represents medical methods such as image segmentation in MR images, 3D image reconstruction from 2D radiographs, left ventricle segmentation and tracking from 2D echocardiography. The second kind of applications is related to video processing such as face, people and cars tracking, and abnormal event detection in crowd videos.","PeriodicalId":362403,"journal":{"name":"Proceedings of the 2017 International Conference on Smart Digital Environment","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Smart Digital Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3128128.3128158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
During last years, images and videos have become widely used in many daily applications. Indeed, they can come from cameras, smartphones, social networks of from medical devices. Generally, these images and videos are used for illustrating people or objects (cars, trains, planes, etc.) in many situations such as airports, train stations, public areas, sport events, hospitals, etc. Thus, image and video processing algorithms have got increasing importance, they are required from various computer visions applications such as motion tracking, real time event detection, database (images and videos) indexation and medical computer aided diagnosis methods. In this paper, we propose a cloud platform that integrates the above-mentioned methods, which are generally developed with popular open source image and video processing libraries (OpenCV1, OpenGL2, ITK3, VTK4, etc.). Theses modules are automatically integrated and configured in the cloud application. Thus, the platform users will have access to different computer vision techniques without the need to download, install and configure the corresponding software. Each guest can select the required application, load its data and get the output results in a safe and simple way. The cloud platform can handle the variety of Operating Systems and programming languages (C++, Java, Python, etc.). Experimentations were conducted within two kinds of applications. The first represents medical methods such as image segmentation in MR images, 3D image reconstruction from 2D radiographs, left ventricle segmentation and tracking from 2D echocardiography. The second kind of applications is related to video processing such as face, people and cars tracking, and abnormal event detection in crowd videos.