Uprolling unrolled quantum groups

T. Creutzig, Matt Rupert
{"title":"Uprolling unrolled quantum groups","authors":"T. Creutzig, Matt Rupert","doi":"10.1142/S0219199721500231","DOIUrl":null,"url":null,"abstract":"We construct families of commutative (super) algebra objects in the category of weight modules for the unrolled restricted quantum group $\\overline{U}_q^H(\\mfg)$ of a simple Lie algebra $\\mfg$ at roots of unity, and study their categories of local modules. We determine their simple modules and derive conditions for these categories being finite, non-degenerate, and ribbon. Motivated by numerous examples in the $\\mfg=\\mathfrak{sl}_2$ case, we expect some of these categories to compare nicely to categories of modules for vertex operator algebras. We focus in particular on examples expected to correspond to the higher rank triplet vertex algebra $W_Q(r)$ of Feigin and Tipunin \\cite{FT} and the $B_Q(r)$ algebras of \\cite{C1}.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219199721500231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We construct families of commutative (super) algebra objects in the category of weight modules for the unrolled restricted quantum group $\overline{U}_q^H(\mfg)$ of a simple Lie algebra $\mfg$ at roots of unity, and study their categories of local modules. We determine their simple modules and derive conditions for these categories being finite, non-degenerate, and ribbon. Motivated by numerous examples in the $\mfg=\mathfrak{sl}_2$ case, we expect some of these categories to compare nicely to categories of modules for vertex operator algebras. We focus in particular on examples expected to correspond to the higher rank triplet vertex algebra $W_Q(r)$ of Feigin and Tipunin \cite{FT} and the $B_Q(r)$ algebras of \cite{C1}.
连根拔起展开的量子群
对于简单李代数$\mfg$在单位根处的展开受限量子群$\overline{U}_q^H(\mfg)$,我们构造了权模范畴内的交换(超)代数对象族,并研究了它们的局部模范畴。我们确定了它们的简单模,并推导了这些类别是有限的、非简并的和带状的条件。受$\mfg=\mathfrak{sl}_2$案例中大量示例的启发,我们期望其中一些类别能够很好地与顶点算子代数的模块类别进行比较。我们特别关注那些与Feigin和Tipunin的高阶三重顶点代数$W_Q(r)$\cite{FT}和\cite{C1}的$B_Q(r)$代数相对应的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信