Static electric fields in vacuum

J. Pierrus
{"title":"Static electric fields in vacuum","authors":"J. Pierrus","doi":"10.1093/OSO/9780198821915.003.0002","DOIUrl":null,"url":null,"abstract":"This chapter begins using Coulomb’s law to derive Maxwell’s electrostatic equations for a vacuum. In doing this, the integral forms of the electrostatic potential Ф and field E are obtained. These results are then used to determine Ф and E for various charge distributions possessing some symmetry: either via Gauss’s law or by directly integrating a known charge density over a line, surface or volume. Applications which require the use of computer algebra software (Mathematica) are included. A multipole expansion of the potential Ф leads to the various multipolemoments of a static charge distribution. Examples which deal with important properties like origin independence are presented. A range of questions and their solutions, not usually encountered in standard textbooks, appear in this chapter.","PeriodicalId":184566,"journal":{"name":"Solved Problems in Classical Electromagnetism","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solved Problems in Classical Electromagnetism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780198821915.003.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter begins using Coulomb’s law to derive Maxwell’s electrostatic equations for a vacuum. In doing this, the integral forms of the electrostatic potential Ф and field E are obtained. These results are then used to determine Ф and E for various charge distributions possessing some symmetry: either via Gauss’s law or by directly integrating a known charge density over a line, surface or volume. Applications which require the use of computer algebra software (Mathematica) are included. A multipole expansion of the potential Ф leads to the various multipolemoments of a static charge distribution. Examples which deal with important properties like origin independence are presented. A range of questions and their solutions, not usually encountered in standard textbooks, appear in this chapter.
真空中的静电场
本章开始使用库仑定律推导真空的麦克斯韦静电方程。这样,就得到了静电势Ф和场E的积分形式。这些结果然后用于确定Ф和E的各种电荷分布具有一定的对称性:通过高斯定律或直接积分已知的电荷密度在一条线,面或体积。需要使用计算机代数软件(Mathematica)的应用程序也包括在内。电势Ф的多极展开导致静电荷分布的各种多极。给出了处理原点独立性等重要属性的例子。一系列问题及其解决方案,通常不会遇到在标准教科书,出现在这一章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信