{"title":"Einstein Versus Bohr on Reality","authors":"S. Goldman","doi":"10.1093/oso/9780197518625.003.0012","DOIUrl":null,"url":null,"abstract":"Ontology is integral to the two most fundamental scientific theories of the twentieth century: quantum theory and the special and general theories of relativity. Issues that drove the development of quantum theory include the reality of quanta, the simultaneous wave- and particle-like nature of matter and energy, determinism, probability and randomness, Schrodinger’s wave equation, and Heisenberg’s uncertainty principle. So did the reality of the predictions about space, time, matter, energy, and the universe itself that were deduced from the special and general theories of relativity. Dirac’s prediction of antimatter based solely on the mathematics of his theory of the electron and Pauli’s prediction of the neutrino based on his belief in quantum mechanics are cases in point. Ontological interpretations of the uncertainty principle, of quantum vacuum energy fields, and of Schrodinger’s probability waves in the form of multiple universe theories further illustrate this point.","PeriodicalId":114432,"journal":{"name":"Science Wars","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Wars","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780197518625.003.0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ontology is integral to the two most fundamental scientific theories of the twentieth century: quantum theory and the special and general theories of relativity. Issues that drove the development of quantum theory include the reality of quanta, the simultaneous wave- and particle-like nature of matter and energy, determinism, probability and randomness, Schrodinger’s wave equation, and Heisenberg’s uncertainty principle. So did the reality of the predictions about space, time, matter, energy, and the universe itself that were deduced from the special and general theories of relativity. Dirac’s prediction of antimatter based solely on the mathematics of his theory of the electron and Pauli’s prediction of the neutrino based on his belief in quantum mechanics are cases in point. Ontological interpretations of the uncertainty principle, of quantum vacuum energy fields, and of Schrodinger’s probability waves in the form of multiple universe theories further illustrate this point.